• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Classification of Remote Sensing Data/Taking Optimal Advantage of Fine Spatial Information

Taking Optimal Advantage of Fine Spatial Information

June 21, 2017

Taking Optimal Advantage of Fine Spatial Information 
Promoting partial image reconstruction for the morphological analysis of very-high-resolution images
W. Liao, J. Chanussot, M. Dalla Mura, X. Huang, R. Bellens, S. Gautama and W. Philips

IEEE Geoscience and Remote Sensing Magazine
DOI: 10.1109/MGRS.2017.2663666
Publication Year: 2017 , Page(s): 8–28

Tags:feature extractionhyperspectral imagingimage reconstructionlaser radarspatial resolution
Attached Files
#
File Type
File Size
Download
1 .pdf 8.70 MB MGRS.2017.2663666_paper
2 .zip 4.58 MB MGRS.2017.2663666_toolbox
Related Articles
  • Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
  • Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization
  • Morphological Attribute Profiles for the Analysis of Very High Resolution Images
  • A Spatial-Spectral Kernel Based Approach for the Classification of Remote Sensing Images

Didn't find your answer? Contact Us

Categories
  • CODES
    • Anomaly
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Feature Extraction
    • Graphs
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Infrared
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Object Detection
    • Pansharpening
    • Registration
    • Sequences
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
    • Target Detection
    • Tensor
  • DATA

Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization  

Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net