• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Classification of Remote Sensing Data/Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization

Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization

November 24, 2017

Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization
Devis Tuia, Diego Marcos and Gustau Camps-Valls

ISPRS Journal of Photogrammetry and Remote Sensing
DOI: 10.1016/j.isprsjprs.2016.07.004
Publication Year: 2016 , Page(s): 1–12

Tags:classificationdomain adaptationfeature extractiongraph-based methodshyperspectral imagingkernel methodsmanifold learningvery high resolution
Attached Files
#
File Type
File Size
Download
1 .pdf 5.62 MB Tuia_2016ISPRS
2 .zip 88.83 MB KEMA-master
Related Articles
  • Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
  • Taking Optimal Advantage of Fine Spatial Information
  • Morphological Attribute Profiles for the Analysis of Very High Resolution Images
  • A Spatial-Spectral Kernel Based Approach for the Classification of Remote Sensing Images

Didn't find your answer? Contact Us

Categories
  • CODES
    • Anomaly
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Feature Extraction
    • Graphs
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Infrared
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Object Detection
    • Pansharpening
    • Registration
    • Sequences
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
    • Target Detection
    • Tensor
  • DATA

  Taking Optimal Advantage of Fine Spatial Information

Morphological Attribute Profiles for the Analysis of Very High Resolution Images  

Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net