• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Multi-modal/Learnable Manifold Alignment (LeMA) : A Semi-supervised Cross-modality Learning Framework for Land Cover and Land Use Classification

Learnable Manifold Alignment (LeMA) : A Semi-supervised Cross-modality Learning Framework for Land Cover and Land Use Classification

April 27, 2020

Learnable Manifold Alignment (LeMA) : A Semi-supervised Cross-modality Learning Framework for Land Cover and Land Use Classification
Danfeng Hong, Naoto Yokoya, Nan Ge, Jocelyn Chanussot, Xiao Xiang Zhu

ISPRS Journal of Photogrammetry and Remote Sensing
DOI : 10.1016/j.isprsjprs.2018.10.006
Publication Year: 2019 , Page(s): 147: 193-205.

code : https://drive.google.com/file/d/11GozMfS9tcnIQkZjDA-vyLDKgTWMPq1m/view?usp=sharing

Tags:cross-modalitygraph learninghyperspectralManifold alignmentMultispectralremote sensingSemi-supervised learning
Attached Files
#
File Type
File Size
Download
1 .pdf 17.05 MB Learnablemanifoldalignment
Related Articles
  • A Disjoint Samples-Based 3D-CNN With Active Transfer Learning for Hyperspectral Image Classification
  • DGSSC: A Deep Generative Spectral-Spatial Classifier for Imbalanced Hyperspectral Imagery
  • Multigraph-Based Low-Rank Tensor Approximation for Hyperspectral Image Restoration
  • Unsupervised Hyperspectral Denoising Based on Deep Image Prior and Least Favorable Distribution
  • Few-shot Learning with Class-Covariance Metric for Hyperspectral Image Classification
  • Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection

Didn't find your answer? Contact Us

Categories
  • CODES
    • Anomaly
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Feature Extraction
    • Graphs
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Infrared
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Object Detection
    • Pansharpening
    • Registration
    • Sequences
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
    • Target Detection
    • Tensor
  • DATA

  More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification

Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification  

Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net