• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Classification of Hyperspectral Images/Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification

Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification

April 27, 2020

Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification
Danfeng Hong, Xin Wu, Pedram Ghamisi, Jocelyn Chanussot, Naoto Yokoya, Xiaoxiang Zhu

IEEE Transactions on Geoscience and Remote Sensing (TGRS)
DOI: 10.1109/TGRS.2019.2957251
Publication Year: 2020

code link : https://drive.google.com/open?id=1i8PoLFRUe0N21icZPtAlMMBm677sHxsD

 

Tags:attribute profile (AP)feature extractionFourierhyperspectral imagingremote sensingspatial–spectral classification
Attached Files
#
File Type
File Size
Download
1 .pdf 10.43 MB InvariantAttributeProfiles
Related Articles
  • DGSSC: A Deep Generative Spectral-Spatial Classifier for Imbalanced Hyperspectral Imagery
  • Semisupervised Cross-Scale Graph Prototypical Network for Hyperspectral Image Classification
  • Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects
  • Hyperspectral Imagery Classification via Random Multi-Graphs Ensemble Learning
  • SGML: A Symmetric Graph Metric Learning Framework for Efficient Hyperspectral Image Classification
  • More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification

Didn't find your answer? Contact Us

Categories
  • CODES
    • Anomaly
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Feature Extraction
    • Graphs
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Infrared
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Object Detection
    • Pansharpening
    • Registration
    • Sequences
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
    • Target Detection
    • Tensor
  • DATA

  Learnable Manifold Alignment (LeMA) : A Semi-supervised Cross-modality Learning Framework for Land Cover and Land Use Classification

Hyperspectral Imagery Classification via Random Multi-Graphs Ensemble Learning  

Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net