• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Spectral Unmixing/Futuristic greedy approach to sparse unmixing of hyperspectral data

Futuristic greedy approach to sparse unmixing of hyperspectral data

December 12, 2016

Futuristic greedy approach to sparse unmixing of hyperspectral data 
N. Akhtar, F. Shafait and A. Mian

IEEE Trans. on Geoscience and Remote Sensing (TGRS)
Publication Year: 2014

Tags:greedy algorithmhyperspectral unmixingorthogonal matching pursuitsparse unmixing
Attached Files
#
File Type
File Size
Download
1 .pdf 6.92 MB Naveed_TGRS_Unmix_Final
2 .zip 629.33 KB OMPStarDemo
Related Articles
  • Multimodal Hyperspectral Unmixing: Insights From Attention Networks
  • Hyperspectral endmember extraction using convex geometry
  • Multimodal Hyperspectral Unmixing: Insights from Attention Networks
  • MiSiCNet: Minimum Simplex Convolutional Network for Deep Hyperspectral Unmixing
  • Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing
  • Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing
Categories
  • CODES
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Feature Extraction
    • Graphs
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Object Detection
    • Pansharpening
    • Registration
    • Sequences
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
    • Tensor
  • DATA
Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net