• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Spectral Unmixing/SUnGP: A greedy sparse approximation algorithm for hyperspectral unmixing

SUnGP: A greedy sparse approximation algorithm for hyperspectral unmixing

December 12, 2016

SUnGP: A greedy sparse approximation algorithm for hyperspectral unmixing
N. Akhtar, F. Shafait and A. Mian

ICPR 2014
Publication Year: 2014

Tags:hyperspectral unmixing
Attached Files
#
File Type
File Size
Download
1 .pdf 1.23 MB Naveed_ICPR2014
2 .zip 626.87 KB SUnGP_demo
Related Articles
  • Blind Hyperspectral Unmixing Based on Graph Total Variation Regularization
  • An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing
  • Hyperspectral Image Unmixing With Endmember Bundles and Group Sparsity Inducing Mixed Norms
  • Empirical Automatic Estimation of the Number of Endmembers in Hyperspectral Images
  • Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation
  • RCMF: Robust Constrained Matrix Factorization for Hyperspectral Unmixing
Categories
  • CODES
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Pansharpening
    • Registration
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
  • DATA
Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net