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A B S T R A C T   

Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated 
remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single 
cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or 
regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To 
this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, mul-
tispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which 
consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the 
single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI 
model’s generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially 
topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also 
closing the gap derived from enormous differences of RS image representations between different cities by means 
of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue 
caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our 
HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art com-
petitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be 
available publicly at https://github.com/danfenghong/RSE_Cross-city.   

1. Introduction 

Remote sensing (RS) is an essential means to acquire large-scale and 
high-quality Earth observation (EO) data in a concise time, which 
significantly advances the development of EO techniques. However, the 
conventional expert system-centric mode has run into bottlenecks and 
cannot meet the EO demand of the RS big data era well, particularly 

when facing complex urban scenes. Artificial Intelligence (AI) tech-
niques provide one viable option that is capable of finding out poten-
tially valuable knowledge from the vast amounts of pluralistic EO data 
more intelligently, enabling the understanding and monitoring of the 
contemporary urban environment. 

These advanced AI models, e.g., deep learning, have been success-
fully applied for various RS and geoscience applications, which have 
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been proven to be particularly applicable to the unitary urban envi-
ronment where the types, characteristics, and spatial distributions of 
surface elements are significantly consistent and similar. Nevertheless, 
the ability to address multiple urban environmental issues with highly 
spatio-temporal and regional change remains limited. The possibly 
feasible solutions are two-fold. On the one hand, the joint exploitation of 
multimodal RS data has been proven to be helpful to improve the pro-
cessing ability of cross-city or regional cases, since the RS data acquired 
from different platforms or sensors can provide richer and more diverse 
complementary information. On the other hand, designing more 
leading-edge AI models with a focus on promoting the generalization 
ability across cities or regions is an inexorable trend to alleviate the 
semantic gap between different urban environments, making it mutually 
transferable for knowledge. 

In recent years, enormous efforts have been made to couple or jointly 
analyze different RS observation sources by the attempts to design 
advanced fusion and interpretation methods to achieve a more diversi-
fied description for the studied urban scene. In particular, a growing 
body of studies has confirmed the achievement of multimodal AI models 
in one single urban environment. It should be noted, however, that 
multi-city-related cases are evolving at a relatively slow speed. This slow 
progression can be satisfactorily explained by two very likely reasons as 
follows.  

• One refers to the lack of high-quality multimodal RS benchmark 
datasets for a better understanding of cross-city environments.  

• Another is that currently developed methodologies prefer to focus on 
extreme performance pursuit in one single urban environment rather 
than improve the model generalization ability, particularly for 
diverse urban environments (e.g., different cities or regions). 

To boost technical breakthroughs and accelerate the development of 
EO applications across cities or regions, creating a multimodal RS 
benchmark dataset for cross-city land cover segmentation makes 
necessary. Just as important, the high generalization ability in terms of 
methodology development is of paramount importance. This drives us to 
develop such a model with high transferability between different cities 
or regions by means of domain adaption (DA) techniques. Numerous 
experiments will be conducted on the cross-city land cover segmentation 
dataset to show the superiority of DA-based approaches over those se-
mantic segmentation algorithms that do not consider knowledge trans-
fer across domains. More specifically, our contributions in this paper can 
be unfolded as follows.  

• A new set of multimodal RS benchmark datasets is built for the study 
purpose of the cross-city semantic segmentation task, named C2Seg for 
short. C2Seg consists of two subsets, i.e., Berlin-Augsburg (in Germany) 
dataset collected from EnMAP, Sentinel-2, and Sentinel-1, respectively, 
Beijing-Wuhan (in China) dataset collected from Gaofen-5, Gaofen-6, 
and Gaofen-3, respectively. The C2Seg dataset will be available freely 
and publicly, promoting the research progress on semantic segmentation 
across cities or regions substantially. To the best of our knowledge, 
C2Seg is the first benchmark dataset about the cross-city multimodal RS 
image segmentation task, which considers the three-modality study 
case, including hyperspectral, multispectral, and synthetic aperture 
radar (SAR) data acquired from the currently well-known satellite mis-
sions. The C2Seg datasets have been utilized for the WHISPERS2023 
conference https://www.ieee-whispers.com/ in the capacity of 
Challenge 1: Cross-City Multimodal Semantic Segmentation. These 
datasets are accessible at https://www.ieee-whispers.com/cr 
oss-city-challenge/, with the training data already made avail-
able. Shortly, we plan to make all datasets, including both training and 
testing data, accessible to the wider research community.  

• A high-resolution domain adaptation network (HighDAN) is devised 
to bridge the gap between RS images from different urban environ-
ments utilizing adversarial learning, thereby making it possible to 

transfer the learned knowledge from one domain to another effec-
tively and eliminate inter-class variations to a great extent. Further, 
HighDAN, which is built based on the high-resolution network (HR- 
Net), is capable of capturing multi-scaled image representations from 
parallel high-to-low-resolution subnetworks, yielding repetitive in-
formation exchange across different resolutions in a highly efficient 
manner.  

• To reduce the impact of the sample number imbalance between 
classes due to the multi-city studies, the Dice loss is considered and 
embedded in the proposed HighDAN. 

The remaining sections of the paper are organized as follows. Section 
2 reviews the related work for semantic segmentation in the land cover 
classification task systematically from the perspectives of individual 
study scenes and cross-region (or cross-city) cases. Section 3 introduces 
the newly-built datasets and correspondingly elaborates on the proposed 
methodology. Experiments are conducted on the datasets with extensive 
discussion and analysis in Section 4. Finally, Section 5 makes the 
conclusion of this paper with some remaining challenges and plausible 
future solutions. 

2. Related work 

Over the past decade, deep learning (DL) has been garnering 
increasing attention in many application fields (Yuan et al., 2020), 
owing to its powerful ability for data representation and learning. In 
particular, the ever-perfecting DL techniques for RS enable accurate and 
automatic land cover mapping. According to different studied scenes, 
we divide these approaches into individual environments and multi- 
region (or city) ones, where single-modality and multimodal RS data 
are further involved. 

2.1. Semantic segmentation on individual environments 

With the emergence and rapid development of DL, there have been 
recently numerous semantic segmentation methods successfully devel-
oped for RS with a focus on a single studied scene (Yuan et al., 2021). 
Kampffmeyer et al. (Kampffmeyer et al., 2016) developed deep con-
volutional neural networks (CNNs) for semantic segmentation in terms 
of small objects in urban areas, where the uncertainty in CNNs is 
modeled by Bayesian approximation in Gaussian process (Gal and 
Ghahramani, 2016). The CNNs-based architecture was also used in 
(Kemker et al., 2018) for semantic segmentation on multispectral RS 
images rather than high-resolution RGB images. In this work, synthetic 
multispectral images are generated for initializing deep CNNs to alle-
viate the effects of label scarcity. Yi et al. (Yi et al., 2019) proposed a 
deep residual U-Net (ResUNet) framework, which consists of cascade 
down-sampling and up-sampling subnetworks, for urban building 
extraction using very high-resolution (VHR) RS images. Further, Dia-
kogiannis et al. (Diakogiannis et al., 2020) designed an enhanced 
ResUNet version, ResUNet-a, with atrous convolutions for semantic 
segmentation of RS images. A multi-scale semantic segmentation 
network was proposed in (Du et al., 2021) for fine-grained urban func-
tional zone classification using VHR RS images and object-based stra-
tegies. Adding to this advancement, Wang et al. (Wang et al., 2022a) 
introduced a recent breakthrough in the field, unveiling an efficient U- 
shaped transformer network custom-tailored for the precise execution of 
semantic segmentation tasks in VHR urban scene images. Concurrently, 
He and his collaborators (He et al., 2022) incorporated the Swin trans-
former into the U-Net architecture, further enhancing the capabilities of 
semantic segmentation in RS applications. In a recent development, as 
documented in (Wang et al., 2023), a novel approach following the 
SegFormer (Xie et al., 2021) framework, enriched by the utilization of 
hypercolumns, has been employed for seismic facies segmentation. 
Although these DL approaches have provided superior segmentation 
accuracy over traditional model-driven models on single-modality RS 
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images, they inevitably meet the performance bottleneck in the complex 
scene understanding task (due to the lack of diverse modality 
information). 

With the ever-growing availability of RS data sources from well- 
known spaceborne and airborne missions, e.g., Gaofen in China, 
Sentinel in the EU, and Landsat in the USA, multimodal RS techniques 
have been garnering increasing attention and made extraordinary 
progress in various EO-related tasks. The data acquired by different 
platforms can provide diverse and complementary information (Dalla 
Mura et al., 2015). The joint exploitation of different RS data has been 
therefore proven to be effective in further enhancing our understanding, 
possibilities, and capabilities in a single urban environment. As the 
mainstream application, semantic segmentation of multimodal RS im-
ages using DL has been widely studied in recent years. Audebert et al. 
(Audebert et al., 2016) extracted the multi-scaled deep features from 
multimodal EO data for semantic labeling. Further, the same authors 
extended their work in (Audebert et al., 2016) by implementing the 
multi-scale deep fully convolutional networks (FCNs) (Long et al., 2015; 
Wu et al., 2019) based on SegNet (Badrinarayanan et al., 2017) to 
process and understand multimodal RS data for land cover segmentation 
(Audebert et al., 2018). Similar to (Hong et al., 2020a), they also dis-
cussed the fusion strategies of different RS modalities, e.g., early, mid-
dle, and late fusion. In (Wieland et al., 2019), multi-sensor cloud and 
shadow segmentation are investigated using CNNs. Wurm et al. (Wurm 
et al., 2019) proposed to transfer FCNs trained from external datasets for 
improving the semantic segmentation performance of cross-modal sat-
ellite images. Segal et al. (Segal-Rozenhaimer et al., 2020) designed a 
CNNs-based cloud detection algorithm based on the Deeplab architec-
ture (Chen et al., 2017a) for multimodal satellite images, achieving an 
effective detection performance improvement. Ren et al. (Ren et al., 
2022) proposed a dual-stream high-resolution network (HR-Net) (Sun 
et al., 2019) for the deep fusion of GF-2 and GF-3 multimodal RS data for 
land cover classification. In the work by Adriano et al. (Adriano et al., 
2021), the authors explored the mapping and evaluation of building 
damage from a segmentation perspective, leveraging the rich informa-
tion provided by multimodal and multitemporal RS data, marking a 
significant advancement in the field of damage assessment. 

2.2. Semantic segmentation across regions or cities 

Currently developed semantic segmentation networks of RS images 
in terms of the design of network architecture, module details, and the 
use of loss functions have reached their performance peak. It is a 
noticeable phenomenon, however, that these models are more often 
than not well-designed for individual study scenes. This will lead to poor 
generalization ability for the model, which can not well match the level 
of the segmentation performance, particularly in the cases of cross-city 
or cross-region studies. For this reason, researchers have started grad-
ually paying more attention to the task of semantic segmentation across 
regions or cities. 

Domain adaptation (DA) has been proven to be helpful in reducing 
the semantic gap between source and target domains (Ganin and Lem-
pitsky, 2015). The DA-related approaches have been recently designed 
to address the challenge of cross-scene RS image semantic segmentation. 
For example, Chen et al. (Chen et al., 2017b) proposed a road scene 
adaptation segmenter by utilizing high-resolution RS images from 
Google Street View in an unsupervised manner, which is well-designed 
to solve the problem of dataset biases across different cities effectively. A 
novel adversarial learning method was presented in (Tsai et al., 2018) 
for DA in semantic segmentation, where the spatially structural simi-
larity is employed to narrow down the gap between data distribution 
differences of different domains. Tong et al. (Tong et al., 2020) first pre- 
trained a deep CNN with a well-annotated Gaofen-2 land cover dataset, 
and transferred the trained deep model for the unlabeled RS image 
classification in the target domain. By contrast, Zhu et al. (Zhu et al., 
2021) directly learned a transfer network by attempting to align the data 

distribution of subdomains with the utilization of a local maximum 
mean discrepancy for image classification. Li et al. (Li et al., 2022) 
proposed a few-shot transfer learning (FSTL) method to improve the 
generalization capability of pre-trained deep CNN on mapping human 
settlement across countries. Li et al. (Li et al., 2021) reduced the impact 
of data shift effectively by designing weakly-supervised constraints, 
making it more suitable for the task of cross-domain RS image semantic 
segmentation. Moreover, Wang et al. (Wang et al., 2022b) contributed to 
the field by facilitating domain adaptation (DA) in the context of cross- 
sensor VHR urban land cover segmentation, with a focus on accommo-
dating both airborne and spaceborne RS images. Further, the same in-
vestigators (Ma et al., 2023) extended their work for semantic 
segmentation in RS by considering local consistency and global diversity 
to enhance the DA capability. 

The joint use of multimodal RS data is capable of better mining the 
representation ability of diverse RS modalities, further weakening the 
effects of data shift to some extent when the model is trained on one RS 
data domain and transferred to another. Hong et al. (Hong et al., 2020b) 
aimed at the semi-supervised transfer learning challenge for cross-scene 
land cover semantic classification in RS and accordingly proposed a 
cross-modal deep network, called X-ModelNet. The same authors in 
(Hong et al., 2021a) further extended their work with two plug-and-play 
adversarial modules to enhance the robustness and transferability of 
cross-region RS image semantic segmentation. Similarly, Ji et al. (Ji 
et al., 2021) fully aligned the source and target domains in the genera-
tive adversarial network (GAN) (Goodfellow et al., 2020) guided image 
space. The style translation technique is utilized to train an end-to-end 
deep FCN with a combination of DA and semantic segmentation from 
the multi-source RS images to identify the different types of land cover 
elements. Zhao et al. (Zhao et al., 2022) reduced the disparity across 
scenes by using fractional Fourier fusion and spatial-spectral DA tech-
niques for cross-domain multi-source RS data classification. These 
aforementioned methods can be unified into a general multimodal deep 
learning framework for RS image land cover classification (i.e., MDL-RS) 
on both individual and cross-region environments (Hong et al., 2021b). 

There have recently been certain researches developed by attempts 
to investigate the feasibility and effectiveness of semantic segmentation 
across regions or cities using multimodal RS images. Yet the inadequate 
integration among high-performance deep semantic segmentation ar-
chitectures, DA networks, and the use of multimodal RS data inevitably 
leads to the performance bottleneck in cross-domain land cover classi-
fication. Most importantly, the problems in the lack of multimodal RS 
benchmark datasets become obstacles to the development of urban RS 
and further decelerate the technical progress of scientific research in 
terms of cross-city semantic segmentation. 

The follow-up two sections will therefore focus on the solutions to 
the two above-mentioned difficulties. Accordingly, one creates large- 
scale multimodal RS benchmark datasets for the study of cross-city se-
mantic segmentation and another brings forth new ideas in the update 
and upgrade of network architecture and blending between multimodal 
RS data and DA techniques. 

3. C2Seg: a multimodal RS dataset for cross-city semantic 
segmentation 

3.1. Overview 

To overcome the difficulty of multimodal RS data shortage and boost 
the technological innovation of urban scene understanding across cities, 
we build a new collection of multimodal RS benchmark datasets, 
including hyperspectral, multispectral, and SAR data, for research into 
cross-city semantic segmentation (i.e., C2Seg). C2Seg datasets consist of 
two cross-city scenes as follows.  

• C2Seg-AB: Berlin-Augsburg cities in Germany, which are collected 
from EnMAP, Sentinel-2, and Sentinel-1 satellite missions on the date 
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as close as possible, and accordingly pre-processed via ESA’s SNAP 
toolbox.  

• C2Seg-BW: Beijing-Wuhan cities in China, which are collected from 
Gaofen-5, Gaofen-6, and Gaofen-3 satellite missions on the date as 
close as possible, and pre-processed using the ENVI software. 

In contrast to certain well-known HR or VHR datasets, such as 
OpenEarthMap (Xia et al., 2023), it’s worth noting that our C2Seg 
datasets encompass three distinct RS modalities, even though they 
maintain a GSD of only 10 m. Furthermore, we are committed to 
fostering research progress in the domain of cross-city semantic seg-
mentation by making the C2Seg datasets openly available for free 
download. These datasets encompass 13 distinct land use and land cover 
semantic categories.1 To the best of our knowledge, this represents a 
pioneering effort in creating a large-scale benchmark dataset tailored for 
cross-city multimodal RS semantic segmentation, taking into account 
three kinds of RS modalities. The C2Seg datasets will be unfolded in 
detail as follows. 

3.2. C2Seg-AB 

In C2Seg-AB, the multimodal RS data and labeled semantic cate-
gories are prepared across Berlin and Augsburg cities in Germany. 
C2Seg-AB consists of hyperspectral data from EnMAP, multispectral 
data from Sentinel-2, and SAR data from Sentinel-1. Fig. 1 visualizes the 
C2Seg-AB datasets in terms of scene location, image region, and 
different modalities with ground truth (GT) of semantic segmentation. 

1) EnMAP Hyperspectral Data. Before launching the EnMAP sat-
ellite, the simulation is the main and widely-used way that obtains the 
EnMAP-related product, which is synthesized by using the full-chain 
automatic simulation tool, i.e., EeteS (Segl et al., 2012), on the high- 
resolution HyMap or HySpex hyperspectral images. The airborne 
hyperspectral imaging sensors, i.e., HyMap and HySpex, are used to 
acquire hyperspectral images over Berlin and Augsburg cities and their 
neighboring areas. Using EeteS, the corresponding EnMAP images can 
be simulated by HyMap and HySpex at a ground sample distance (GSD) 
of 30 m, which are openly available form https://doi.org/10. 
5880/enmap.2016.002 and https://mediatum.ub.tum. 

de/1657312, respectively. Further, the two hyperspectral images are 
upsampled to 10 m GSD to keep the identically spatial resolution of all 
multimodal RS images in the same studied scene. Therefore, the 
resulting images consist of 2465 × 811 pixels (Berlin) and 886 × 1360 
pixels (Augsburg), respectively, and they share the same spectral bands 
(i.e., 242) in the wavelength range of 400 nm to 2500 nm. More details 
can be found in (Okujeni et al., 2016; Hu et al., 2023). 

2) Sentinel-2 Multispectral Data. The Sentinel-2 mission is 
composed of two twin-orbit satellites (i.e., Sentinel-2 A/B) with a 
combined revisiting time of approximately five days at the equator, the 
spatial, spectral, and temporal resolution, therefore, makes Sentinel-2 
well-suited for dynamic land cover mapping and monitoring. The 
Sentinel-2 multispectral sensor covers a total of 13 spectral bands 
ranging from 10 m to 60 m with different spatial resolutions, and the 
captured spectral reflectance ranges from visible to NIR and SWIR 
wavelengths. The best pixels in Sentinel-2 multispectral composite are 
used in this work, which has been further processed by the SEPAL cloud 
platform data processing system (sepal.io) of the Food and Agriculture 
Organization of the United Nations (FAO). Furthermore, the Top of 
Atmosphere (TOA) reflectance was converted to surface reflectance, and 
the best pixels were selected from the past three years as of April 2020 

using a medoid compositing function, where the radiative transfer 
models are applied in (Hansen et al., 2008) and were later adapted to 
Sentinel-2 by FAO. In our case, 4 spectral bands are selected from 
Sentinel-2, e.g., red, green, blue, and near-infrared (NIR), at a GSD of 10 
m by following a geographic reference of WGS84/UTM Zone 32 N. 

3) Sentinel-1 SAR Data. The SAR component is acquired by the 
Sentinel-1 mission, which is a level-1 Ground Range Detected product 
obtained by the Interferometric Wide Swath mode. The SAR data is 
characterized by dual-polarized information with VV and VH channels. 
The SNAP toolbox is specially designed by the European Space Agency 
(ESA) for pre-processing Sentinel-1 data to obtain an analysis-ready SAR 
image, which can be available from the link at https://step.esa. 
int/main/toolboxes/snap/. The workflow performed in the 
SNAP toolbox follows several steps, i.e., precise orbit profile, radio-
metric calibration, deburst, speckle reduction, and terrain correction. 
Employing the shuttle radar topography mission, the topographic data 
are generated well. Different from the Sentinel-2 multispectral image, 
the Sentinel-1 SAR image is not strictly sampled to the GSD of 10 m. 
Accordingly, the SAR image is geo-coded to be 10 m GSD via the bilinear 
interpolation operator. Finally, the SAR images with two channels, i.e., 
intensities of VV and VH, are aligned with the pixel-wise EnMAP and 
Sentinel-2 images. 

4) Ground Truth of Semantic Segmentation. Herein, we label the 
GT of semantic segmentation by retrieving land use and land cover 
(LULC)-labeled data from OpenStreetMap (OSM) LULC platform at 
https://osmlanduse.org/ and 12 main classes well-defined in 
OSMLULC are considered in our case. Accordingly, we manually check 
the labels within the cities of Berlin and Augsburg and also included the 
major street network from OSM and appended it to the existing 12 
classes, which ensures the granularity and accuracy of the final labeled 
data. By extending those classes defined in (Schultz et al., 2017), we end 
up with 13 distinct semantic segmentation features, including urban, 
industrial, mine, artificial vegetated, arable land, permanent crops, 
pastures, forests, shrubs, open spaces, inland wetlands, water bodies, 
and street networks. The elaborately produced LULC maps as GT data (i. 
e., for the purpose of the semantic segmentation task) in our studied 
areas are visualized in color (see Fig. 1). 

3.3. C2Seg-BW 

The C2Seg-BW dataset provides multimodal RS data and labeled 
semantic categories across Beijing and Wuhan cities in China, as shown 
in Fig. 2. Similarly, hyperspectral, multispectral, and SAR data are 
involved in the dataset, which is collected from Gaofen series satellites, 
such as Gaofen-5, Gaofen-6, and Gaofen-3, respectively. The acquisition 
dates or satellite perigee passing time of these modality data are late 
2019 and early 2020, which ensures that the ground elements remain 
unchanged as much as possible. 

1) Gaofen-5 Hyperspectral Data. The Gaofen-5 hyperspectral data 
is the level-1 A product collected by the Advanced Hyperspectral Imager 
(AHSI) (Liu et al., 2019) from the China Center for Resource Satellite 
Data and Applications (CRESDA). The spatial resolution of the hyper-
spectral image is around 30 m with a narrow swath width of approxi-
mately 60 km, and there are 330 spectral bands ranging from 400 nm to 
2500 nm. The spectral resolution in the visible and near-infrared (VNIR) 
region (i.e., 400 nm to 1000 nm) is about 5 nm, while that in the short- 
wave infrared (SWIR) region (i.e., 1000 nm to 2500 nm) is about 10 nm. 

The hyperspectral images are pre-processed using the ENVI 5.6 
software, whose workflow mainly includes radiometric calibration, Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 
correction, orthorectification, and bands selection. The band selection 
operation is utilized to massively remove the water vapor absorption, 
noisy, and bad bands to maintain the image quality. The selected 116 
bands are further processed by using the Savitzky-Golay filter. The 
resulting hyperspectral images are upsampled from 30 m to 10 m GSD 
and they then consist of 13474 × 8706 pixels in Beijing and 6225 ×

1 They are Urban Fabric, Industrial/Commercial/Transport Units, Mine/Dump/ 
Construction Sites, Artificial/Non-Agricultural/Vegetated Areas, Surface Water, 
Street, Arable Land, Permanent Crops, Pastures, Forests, Shrub and/or Herbaceous 
Vegetation Associations, Open Spaces with Little or Non-Vegetation, and Inland 
Wetlands. 
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8670 pixels in Wuhan, respectively, with a geographic reference of 
WGS1984 Web Mercator (Auxiliary Sphere). 

2) Gaofen-6 Multispectral Data. The Gaofen-6 product is acquired 
by the specially-designed camera to collect the panchromatic and mul-
tispectral images with spatial resolutions of 2 m and 8 m simultaneously. 
The multispectral data are used in this paper and pre-processed on the 
ENVI platform via the standardized processing flow similar to hyper-
spectral data. To maintain the consistency of the spatial resolution, the 
four spectral bands in the multispectral image are resampled to 10 m. 

3) Gaofen-3 SAR Data. The Gaofen-3 product is collected under the 
Wide Fine Stripmap mode, yielding a spatial resolution of 10 m with a 
swath width of 100 km. The SAR data are prepared by utilizing the 
functions of de-speckle and terrain correction in the ENVI SARscape 
Analytics toolbox. The Refined Lee filter (Yommy et al., 2015) with a 
sliding window size of 5 × 5 pixels is selected to remove the speckle 
noises, and the SAR data are corrected employing global digital eleva-
tion model (DEM) data in GMTED2010 (Danielson and Gesch, 2011). 
Similar to Sentinel-1, we adopt the dual-Pol SAR image with HH and HV 
channels for two studied scenes, and the image size and resolution are 
the same as those of Ganfen-6 multispectral data. 

4) Ground Truth of Semantic Segmentation. Similar to C2Seg-AB, 
we retrieve LULC-labeled data and major street networks within the 
cities of Wuhan and Beijing (in China) from OSMLULC and OSM, 
respectively. Herein, we again classify LUCL-labeled data by following 
the class schema defined in (Schultz et al., 2017), which is based on the 
widely-accepted Corine Land Cover (CLC) schema (Feranec et al., 2016). 
However, the availability of OSM data in China is insufficient for se-
mantic labeling. For this reason, we manually map and complete the 

LULC features by taking multispectral and hyperspectral images as the 
reference, making it consistent with the labeling schema used in C2Seg- 
AB datasets. The labeled data of 13 distinct classes serve as a piece of 
ground-truth information for the following quantitative analysis of 
cross-city semantic segmentation tasks throughout this paper. 

4. HighDAN: high-resolution domain adaptation network 

4.1. A brief recall of HR-net 

Convolutional neural networks (CNNs) have been proven to be 
effective in learning rich representations from images. Many well- 
known CNNs-based deep network architectures have been put forward 
successively, such as AlexNet (Krizhevsky et al., 2017), VGGNet 
(Simonyan and Zisserman, 2015), and GoogleNet (Szegedy et al., 2015). 
However, there is a potentially common problem in these backbones, i. 
e., the resolution of the generated feature maps is relatively low when 
performing the feature extraction by adopting the convolution connec-
tion from high resolution to low resolution in series. This inevitably 
leads to the loss of spatial information. As a result, the traditional so-
lution to this issue is designing an encoder-decoder architecture, i.e., 
reducing image resolution via the encoder and restoring to high- 
resolution representations via the decoder. These networks, e.g., U-Net 
(Ronneberger et al., 2015), SegNet (Badrinarayanan et al., 2017), 
DeconvNet (Noh et al., 2015), Hourglass (Newell et al., 2016), belong to 
the member of the encoder-decoder structure in essence. Nevertheless, 
this kind of deep network architecture tends to generate blurred low- 
resolution feature maps due to multiple convolution operations. These 

Fig. 1. Visualizing C2Seg-AB datasets for semantic segmentation study scene across Berlin and Augsburg cities in Germany using multimodal RS data.  
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feature maps with different resolutions are further integrated into series 
connections, raising the risk of the loss of edge details and texture 
information. 

To overcome the difficulty mentioned above, HR-Net (Sun et al., 
2019) is proposed to generate and maintain high-resolution represen-
tations. The HR-Net’s increments lie in three-folds as follows.  

• To connect the high-to-low-resolution convolution streams in a 
parallel fashion instead of previous series connections, as shown in 
Fig. 3 to visualize their differences.  

• To keep high-resolution representations throughout the whole 
network architecture. 

• To exchange the information of feature maps across different reso-
lutions, enabling the compact fusion between high- and low- 
resolutions to enhance the model’s performance. The fusion strat-
egy mainly consists of 1) identity mapping for feature maps with the 
same resolutions; 2) bilinear upsampling plus 1 × 1 convolution for 
feature maps from low to high-resolutions; 3) 3 × 3 stride convolu-
tion for feature maps from high to low-resolutions. Fig. 4 illustrates 
the fusion mode in HR-Net. 

4.2. Method overview of HighDAN 

Owing to the advancement and superiority of the HR-Net architec-
ture in terms of learning high-resolution representations from images, 
we propose a novel multimodal HR-Net backbone (i.e., HighDAN) with 
unsupervised domain adaptation for the cross-city semantic segmenta-
tion task using multimodal RS data. Overall, the HighDAN architecture 
consists of the multimodal encoder, adversarial domain adaptation, and 
convolution decoder. The design of the domain adaptation module aims 
to bridge the gap between the representations of source and target do-
mains in an adversarial learning fashion, thereby fully mining the 
invariant semantic features from multimodal RS data and transferring 
them across domains. Embedding Dice loss (Li et al., 2020) into net-
works, HighDAN is capable of weakening the class imbalance effects 
that tend to be generated in the case of cross-city image interpretation, e. 
g., semantic segmentation. An illustrative workflow for HighDAN is 
given in Fig. 5. 

Fig. 2. Visualizing C2Seg-BW datasets for semantic segmentation study scene across Beijing and Wuhan cities in China using multimodal RS data.  

Fig. 3. Visualizing the comparison for connection modes of feature maps with different resolutions: (a) Series Connection and (b) Parallel Connection.  
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4.3. Multimodal encoder 

The multimodal encoder consists of a feature extraction head and a 
multimodal high-resolution (HR) subnetwork. As the name suggests, the 
feature extraction head learns the preliminary representations for 
different RS modalities by transformations. The head is comprised of the 
3 × 3 convolution block and four bottleneck blocks. Fig. 6 visualizes the 
feature extraction head: (a) convolution block and (b) bottleneck block. 
The former convolution block can be formulated as 

Zk = fWk ,Bk (Xk), (1)  

where k is the index (e.g., 1,2,…) for different RS modalities, and X and 
Z denote the input modality image and the feature representations via 
the convolution block, respectively. The function f(⋅), i.e., the convo-
lution block, is unfolded as 3 × 3 convolution operation, batch 
normalization (BN), and ReLU activation function, which is with respect 
to the network variables of weights W and biases B. Given that hyper-
spectral data typically possesses a significantly higher dimensionality 
compared to multispectral and SAR data, it is common practice to 
employ dimensionality reduction techniques (e.g., PCA) to preprocess 
the data before feeding it into networks. Additionally, to ensure 
compatibility with the input dimensions of bottleneck blocks, several 
extra convolutional layers are utilized for all input data, facilitating 
seamless integration within the network architecture. The later bottle-
neck block is expressed by 

Qk = gWk ,Bk (Zk), (2)  

where Q denotes the feature representations via the bottleneck block. 

The bottleneck block can be represented as the function g(⋅) with respect 
to the to-be-learned network variables: W and B, which can be unfolded 
as 1 × 1 convolution, BN, 3 × 3 convolution, BN, 1 × 1 convolution, and 
BN in sequence. To provide a further explanation, the multimodal 
encoder in HighDAN initiates with a three-stream network architecture 
that takes as input multimodal RS data, including hyperspectral, mul-
tispectral, and SAR (see Fig. 5). This architecture is instrumental in 
elucidating the approach used to effectively combine data from diverse 
RS modalities. 

The multimodal HR subnetwork well inherits attributes of HR-Net 
that can extract HR image representations. Following the HR-Net, the 
input RS modality image is firstly downsampled by convolution opera-
tions with a 2-stride as the main stem. By gradually adding high-to-low- 
resolution streams, feature maps with different resolutions are then 
connected and fused in parallel to acquire diversified resolution repre-
sentations. The process can be written as 

Vk = hWk ,Bk (Qk), (3)  

where Vk denotes the HR representations of the k-th modality via the 
multimodal HR subnetwork. The function h(⋅) is defined as the multi-
modal HR subnetwork by copying the HR module in HR-Net (Sun et al., 
2019), which is illustrated in Fig. 6 (c) with HR block. That is, it consists 
of a multi-resolution group convolution and a multi-scale fusion layer. 
The former refers to a regular convolution for each resolution stream 
over different spatial resolutions separately, and the latter aims to 
perform an interactive fusion of feature maps across scales. It should be 
noted that the HR module for different RS modalities is shared in terms 
of network parameters to capture the high-quality multimodal 

Fig. 4. The fusion strategy in HR-Net for feature maps between different resolutions, including the same resolution fusion, upsampling fusion, and down-
sampling fusion. 

Fig. 5. An illustrative workflow of the proposed HighDAN for cross-city semantic segmentation, which mainly consists of feature extraction head, high-resolution 
(HR) module, multi-resolution fusion, adversarial domain adaptation, and segmentation head (convolution decoder module). 
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characteristics more steadily. The outputs from each resolution stream 
are re-scaled to the same resolution as HR representations through 
bilinear upsampling, achieving the multi-resolution fusion via feature 
stacking. 

4.4. Adversarial domain adaptation 

According to the adversarial learning in GAN, the image-to-image 
translation techniques (Isola et al., 2017) enable the pixel-level align-
ment and knowledge conversion between source and target domains. 
This further provides possible and potential solutions to the cross- 
domain semantic segmentation task. Prior to conducting DA, it is 
essential to concatenate all feature maps obtained from the various 
multimodal streams, denoted as V = {Vk}

m
k=1. This consolidation of 

feature maps is a crucial step in the process. Inspired by (Yu et al., 2021), 
we adopt two types of DA modules based on the adversarial learning 
strategy to align representations of source and target domains at both 
feature-level and category-level. On the one hand, the feature-level DA 
module attempts to reduce biases of cross-domain intermediate feature 
maps (i.e., V) obtained from the multimodal HR encoder. Herein, pixel- 
wise confidence scores that can reflect the degree of local alignment in 
different domains are generated from the discriminator, which can be 
used to reweigh the intermediate features V to correct the representation 
shift between different domains locally. This yields the aligned repre-
sentations as A. On the other hand, the category-level DA module aims to 
enhance global semantic alignment from the label distribution 
perspective, which is used in the final prediction phase. The global se-
mantic alignment operation can be regarded as a kind of soft constraint 

Fig. 6. Clarifying details in the multimodal encoder of HighDAN of (a) convolution block, (b) bottleneck block, and (c) HR block, where (a) and (b) form the feature 
extraction head and (c) is the main body of multimodal HR subnetwork. 

Fig. 7. A diagram of adversarial domain adaptation used in HighDAN, which consists of feature-level adversarial DA and category-level adversarial DA. The pixel- 
wise attention map is generated by the feature-level adversarial DA and explored for reweighing and correcting the feature representations from the target domain, 
making it compatible with features from the source domain. The category-level adversarial DA can further refine the segmentation results. 
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on the category centers, which drives the same category closer to each 
other in different domains. Visually, Fig. 7 gives the corresponding di-
agram of adversarial DA used in HighDAN. 

4.5. Convolution decoder 

Given the aligned feature representations A via DA, a segmentation 
head in the form of the convolution decoder is further applied on A to 
progressively reconstruct feature maps consistent with the size of se-
mantic labels, which can be formulated by 

U = TW,B(A), (4)  

where U denotes the predicted semantic label map, and the function T(⋅)
represents the decoder module that consists of convolution, BN, ReLU 
activation function, and 2× upsampling operation. 

Algorithm 1. A flowchart of the proposed HighDAN.   

4.6. Model training 

A flowchart illustrating the proposed HighDAN model is outlined in 
Algorithm 1, with step-by-step procedures provided for clarity. Let X ∈

ℝhw×N and Y ∈ ℝl×N be the input images and the ground truth (GT) of 
semantic segmentation labels with hw and l dimensions, respectively, by 
N pixels. Then, xi and yi are denoted to be the corresponding i-th element 
(or pixel). With these definitions, the network concerning the to-be- 
updated parameters of W and B is trained by optimizing the following 
objective function. The overall loss L in objective function is 

L = L seg + λL
f
adv + μL c

adv, (5)  

where λ and μ are defined as the penalty parameters to balance different 
terms in the training phase, and we set them to be both 0.5 empirically 

and experimentally. More specifically, the three terms are detailed in the 
following. 

The first term in Eq. (5) is the segmentation loss, which consists of 
multi-class cross-entropy loss and Dice loss, i.e., 

L seg = L MCE + L Dice. (6) 

L MCE calculates the loss for each pixel equally, and L Dice can alleviate 
the negative effects due to the imbalanced training samples, e.g., 

L Dice = 1 −
2
∑N

i=1
yi ŷi

∑N

i=1
yi +

∑N

i=1
ŷi

, (7)  

where ŷi denotes the predicted semantic label in the i-th pixel. 
The second term in Eq. (5) is the feature-level adversarial loss. Unlike 

the vanilla GAN that utilizes the classic cross-entropy loss to train the 
discriminator, the least square loss in (Mao et al., 2017) is exploited in 
our DA task to avoid the gradient vanishing issue. Suppose the input 
modality data Xs is from the source domain and Xt is from the target 

domain, the generator Ef and discriminator Df can be alternatively 
optimized by minimizing 

L
f
adv

(
Df

)
= EXs

[(
Df (Vs) − 0

)2
]
+ EXt

[(
Df (Vt) − 1

)2
]
,

L
f
adv

(
Ef
)
= EXt

[(
Df

(
Ef (Xt)

)
− 0

)2
]
,

(8)  

where Vs and Vt are the feature maps (e.g., using Eq. (3)) extracted from 
the source domain and target domain, respectively, via multimodal HR 
encoder module (collectively known as the generator Ef in our case). To 
ensure the stability of feature maps of the target domain, we optimize Vt 

by using the updated rule of Vt
new = Vt + Vt ⊙ α, where α denotes the 

attention map. 
The third term in Eq. (5) is the category-level adversarial loss. The 

analogy to the second term, the adversary is performed at the category 
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level to improve the global adaptation ability in networks. We thus have 
the following adversarial loss: 

L c
adv(Dc) = EXs

[
(Dc(Us) − 0 )2 ]

+ EXt

[
(Dc(Ut) − 1 )2

]
,

L c
adv(Pc) = EXt

[
(Dc(Pc(Xt) ) − 0 )2

]
,

(9)  

where Us and Ut are the output’s decoder maps (e.g., using Eq. (4)) of 
the source domain and target domain via the proposed HighDAN, that is 
Pc as well. 

5. Experiments 

5.1. Experimental preparation 

5.1.1. Implementation details 
The proposed HighDAN is implemented on the PyTorch platform, 

and all deep models are trained using CPU with i7-6850K, RAM with 
128GB, and GPU with 11GB NVIDIA GTX1080Ti. The Adam (Kingma 
and Ba, 2014) is selected as the network optimizer with the iterations of 
6000 epochs for C2Seg-AB and 10,000 epochs for C2Seg-BW, respec-
tively. The learning rates of the segmentation network and discriminator 
are both 0.0001 with a batch size of 16. By cropping the whole scene 
images with the sliding window at certain intervals, we collect 273 (or 
7140) and 140 (or 850) images with the size of 128 × 128 (or 256×

256) as a source domain for training and as a target domain for testing, 
respectively, on C2Seg-AB (or C2Seg-BW) datasets. 

5.1.2. Network configuration 
To enable the reconstruction of the proposed semantic segmentation 

network, we particularize the HighDAN architecture layer by layer. 
HighDAN successively starts with convolution blocks, and four bottle-
neck blocks are connected. Behind it, three feature encoding modules 

are adopted, each consisting of four basic HR blocks. The convolution 
decoder module is finally added with the combination of four decoding 
blocks. Between the two modules, an adversarial block and a 
concatenation-based fusion layer are embedded. For more details, the 
layer-wise network configuration of HighDAN is listed in Table 1. 

5.1.3. Evaluation metrics 
We evaluate the cross-city semantic segmentation performance 

qualitatively and quantitatively in terms of three metrics in common 
use: overall accuracy (OA), mean intersection over union (mIoU), and 
mean F1 score (mF1). OA, also known as pixel accuracy (PA), collects 
each pixel prediction: 

OA =

∑l

i=1
pii

∑l

i=1

∑l

j=1
pij

, (10)  

where i, j, and l represent the real value, predicted value, and the total 
number of classes, respectively, and the pij denotes the number of pixels 
that predict the i-th class as the j-th class. mIoU computes the intersec-
tion and union of two sets, which is defined by 

mIoU =
1
l

∑l

i=1

pii
∑l

j=1
pij +

∑l

j=1
pji − pii

. (11) 

mF1 score is the harmonic mean of precision (P) and recall (R), 
which is given by 

mF1 =
1
l
×

2 × P × R
P + R

, (12)  

where 

P =
∑l

i=1

pii
∑l

j=1
pij + pii

, R =
∑l

i=1

pii
∑l

j=1
pji + pii

. (13)  

5.1.4. Comparison with state-of-the-art models 
We select current state-of-the-art (SOTA) semantic segmentation 

models for qualitative and quantitative performance comparison using 
multimodal RS data in the cross-city case. They are DeepLabv3 (Chen 
et al., 2017a), SegNet (Badrinarayanan et al., 2017), FastFCN (Wu et al., 
2019), AdaptSeg (Tsai et al., 2018), deep subdomain adaptation 
network (DSAN) (Zhu et al., 2021), Dual-stream HR-Net (DualHR) (Ren 
et al., 2022), SegFormer (Xie et al., 2021), and our proposed HighDAN. 
The (Xie et al., 2021; Wu et al., 2019; Badrinarayanan et al., 2017; Chen 
et al., 2017a; Ren et al., 2022) models fail to consider data shifts be-
tween different domains, while the rest effectively embed the DA 
strategy into networks. It is worth noting that we prioritize using the 
same network configurations (given in the original literature) for 
compared approaches. Further, the relevant parameters can be slightly 
adjusted, making it applicable to the segmentation experiments of 
multimodal RS data. 

5.2. Quantitative evaluation on C2Seg datasets 

Tables 2 and 3 quantify the cross-city semantic segmentation per-
formance by comparing current SOTA deep models with our HighDAN 
in terms of pixel-wise OA, mIoU, mF1, and F1 scores for each class as 
well as the model’s computational complexity (FLOPs) and parameters 
on C2Seg datasets (C2Seg-AB and C2Seg-BW, respectively). 

By and large, the cross-city segmentation performance of deep net-
works without the consideration of data shifts across domains (e.g., 
DeepLabv3, SegNet) is inferior to that of those models that effectively 
embed the DA strategy into networks. SegNet shows comparable per-
formance with DeepLabv3 in terms of OA, mIoU, and mF1 on C2Seg-AB 
Datasets, while SegNet and DeepLabv3 hold similar segmentation ac-
curacies on C2Seg-BW Datasets. For those DA-guided segmentation 

Table 1 
Layer-wise network configuration of the proposed HighDAN. Conv, BN, HR, and 
Num are abbreviations of convolution, batch normalization, high resolution, and 
number, respectively.   

Hyperspectral Multispectral SAR Output 
Dimension 

Convolution 
Block 

3 × 3 Conv 3 × 3 Conv 3 × 3 Conv 64 
BN BN BN 
ReLU ReLU ReLU 
3 × 3 Conv – – 
BN – – 
ReLU – – 

Bottleneck 
Module 

Bottleneck 
Block*4 

Bottleneck 
Block*4 

Bottleneck 
Block*4 

48 

Feature 
Encoding 1 

Basic HR 
Block*4 

Basic HR 
Block*4 

Basic HR 
Block*4 

48/96 

Sum Fusion Sum Fusion Sum Fusion 
Feature 

Encoding 2 
Basic HR 
Block*4 

Basic HR 
Block*4 

Basic HR 
Block*4 

48/96/192 

Sum Fusion Sum Fusion Sum Fusion 
Feature 

Encoding 3 
Basic HR 
Block*4 

Basic HR 
Block*4 

Basic HR 
Block*4 

48/96/ 
192/384 

Sum Fusion Sum Fusion Sum Fusion 
Fusion Layer Feature Concatenation 720*3 
Adversarial 

Module 
Output the attention scores to reweigh feature 
maps 

720*3 

Convolution 
Decoder 
Module 

3 × 3 Conv 256 
BN 
ReLU 
3 × 3 Conv 128 
BN 
ReLU 
3 × 3 Conv 64 
BN 
ReLU 
Transposed Convolution Num of 

Class 1 × 1 Conv  
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networks, the adversarial DA methods (e.g., FastFCN, AdaptSeg) show 
competitive results compared to DSAN based on the local maximum 
mean discrepancy. Although FastFCN and AdaptSeg perform moderately 
lower than DSAN at an average decrease of 3%∼4% OAs, 2%∼3% 
mIoUs, and 2%∼4% mF1s, respectively, yet their F1 scores for each 
category are holistically comparable to DSANs’ and the main differences 
lie in certain special categories, e.g., Pastures, Forests, Shrub, etc. on the 
C2Seg-AB datasets. It is important to note that when confronted with 
more complex and extensive datasets e.g., C2Seg-BW, the generalization 
capability of DSAN appears to be somewhat constrained in comparison 
to FastFCN and AdaptSeg. 

Furthermore, the HR-Net backbone architecture can offer greater 
potential for extracting a wealth of semantic information from multi-
modal RS data in comparison with the CNNs-based backbone in the 
semantic segmentation task. For example, DualHR brings increments of 
13% OA based on DSAN on C2Seg-BW datasets, but the performance is 
basically identical to those on C2Seg-AB datasets, compared to DSAN. 
However, it is essential to note that transformer-based methods (i.e., 
SegFormer) consistently demonstrate competitive and stable perfor-
mance on both C2Seg datasets, achieving the second-highest results 
across all evaluation indices. Not unexpectedly, the proposed HighDAN 
achieves the best segmentation performance by 4.26%, 4.60%, and 
5.90% gains in OA, mIoU, and mF1 (cf. SegFormer) on C2Seg-AB 

datasets, while there is also a nearly similar trend, even higher perfor-
mance (e.g., over 6% OA increase), on C2Seg-BW datasets. A more 
noteworthy point to demonstrate the superiority of HighDAN lies in that 
HighDAN obtains the highest F1 scores in many dominated categories, e. 
g., Surface water, Street network, Urban fabric, Arable land, Forests, etc. on 
either C2Seg-AB or C2Seg-BW datasets. We have to admit, however, that 
C2Seg is a very challenging semantic segmentation dataset. It is 
observed that some categories are hardly identified, that is, the seg-
mentation results for certain classes are 0% and few are approximately 
close to 0%. 

5.3. Visual comparison on C2Seg datasets 

Figs. 8 and 9 visualize the segmentation maps of eight different al-
gorithms in terms of 13 semantic categories for the whole scenes of 
Berlin city and Wuhan city on C2Seg datasets. There is a more significant 
visual difference between predicted segmentation results and GT (on 
both Berlin and Wuhan scenes) in DeepLab and SegNet. On the one 
hand, Pastures are prone to be wrongly classified as Arable land, while 
Inland Wetlands are heavily identified to be Forests in the Wuhan scene. 
On the other hand, Urban fabric and Industrial, commercial, and transport 
are easily confused due to their similar spectral characteristics and 
functions. Compared to the first two methods, FastFCN has visible 

Table 2 
Quantitative performance comparison of deep semantic segmentation networks in terms of OA, mIoU, mF1, and F1 scores for each class as well as the model’s 
computational complexity (FLOPs) and parameters on C2Seg-AB datasets. The symbol ‘–’ denotes no pixels correctly identified. The best result is marked in bold.  

Class Name DeepLab SegNet FastFCN AdaptSeg DSAN DualHR SegFormer HighDAN 

Surface water 0.31 18.53 24.24 22.96 12.20 38.49 37.45 52.06 
Street network 9.54 3.00 13.00 13.61 5.80 20.98 0.79 21.35 
Urban fabric 56.58 58.08 60.75 66.00 71.66 62.73 69.84 72.52 
Industrial, commercial, and transport 35.86 39.88 41.48 42.99 26.15 48.13 57.98 62.37 
Mine, dump, and construction sites – 5.72 6.30 6.90 15.96 17.72 22.32 21.95 
Artificial vegetated areas 25.35 0.33 16.21 19.11 24.38 18.01 26.56 33.41 
Arable land 53.28 58.34 48.01 48.47 55.85 61.14 53.91 65.92 
Permanent crops – – – – – – – 1.17 
Pastures 1.69 34.91 8.02 0.83 21.49 0.23 35.97 37.87 
Forests 62.85 34.20 51.47 53.43 65.72 53.52 70.87 74.35 
Shrub 0.59 1.60 0.39 11.23 17.64 2.34 5.06 14.51 
Open spaces with no vegetation – – – – – – – – 
Inland wetlands – – – – – – – – 
OA (%) 42.46 43.40 43.51 44.53 47.68 48.05 53.40 57.66 
mIoU (%) 12.64 12.65 13.33 14.30 16.33 16.49 20.16 24.76 
mF1 (%) 18.93 19.59 20.76 21.96 24.37 24.87 29.29 35.19 
FLOPs (B) / GFLOPs 56.42 30.53 38.58 38.34 53.67 37.46 5.82 40.11 
Params (M) 72.68 29.48 56.70 44.86 107.44 15.33 28.97 16.55  

Table 3 
Quantitative performance comparison of deep semantic segmentation networks in terms of OA, mIoU, mF1, and F1 scores for each class as well as the model’s 
computational complexity (FLOPs) and parameters on C2Seg-BW datasets. The symbol ‘–’ denotes no pixels correctly identified. The best result is marked in bold.  

Class Name DeepLab SegNet FastFCN AdaptSeg DSAN DualHR SegFormer HighDAN 

Surface water 50.42 37.87 45.39 59.57 – 60.51 78.49 78.37 
Street network 16.30 6.17 2.38 17.05 – 0.29 0.05 0.58 
Urban fabric 33.75 34.86 38.44 25.06 42.08 0.76 30.90 40.04 
Industrial, commercial, and transport 2.48 1.87 27.63 32.77 25.68 24.19 20.38 43.67 
Mine, dump, and construction sites 1.70 1.36 0.86 1.94 1.22 0.26 2.52 1.67 
Artificial vegetated areas 8.97 2.23 8.83 8.99 9.55 4.19 10.79 9.28 
Arable land – 16.23 – 9.11 25.37 – 18.01 0.43 
Permanent crops – 1.57 – 0.30 – – 1.77 0.10 
Pastures – – – – – – – – 
Forests 1.68 13.31 4.14 32.98 46.85 32.70 38.72 47.22 
Shrub 0.72 – – – – 0.22 10.48 0.26 
Open spaces with no vegetation – – – – – 0.33 0.01 – 
Inland wetlands – – – – – 0.01 0.01 – 
OA (%) 19.51 15.94 21.22 29.26 18.55 31.97 33.56 39.58 
mIoU (%) 5.45 5.17 5.96 8.92 7.09 6.17 10.89 11.92 
mF1 (%) 8.92 8.88 9.82 14.44 11.60 9.53 16.32 17.69 
FLOPs (B) / GFLOPs 213.01 122.13 154.32 144.58 214.67 149.86 23.30 160.45 
Params (M) 72.68 29.48 56.70 44.86 107.44 15.33 28.97 16.55  
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advantages in discriminating the semantic category of Urban Fabric and 
Artificial vegetated areas, while AdaptSeg is capable of identifying Arable 
Land more accurately (despite the over-recognition of Shrub and Pastures 
being Arable Land). We have to admit, however, that the ability of 
AdaptSeg to classify urban-related semantic elements remains limited. 
DSAN is a good recognizer for urban-related and vegetation semantic 
categories, which can well distinguish Urban fabric and Industrial, com-
mercial, and transport as well as Forests and Arable land. In the family of 
HR-Net, DualHR is sensitive to capturing water bodies from a big urban 
scene but fails to detect urban accurately, while the proposed HighDAN 

visually shows, as expected, comparatively realistic segmentation maps 
closer to GT (cf. SegFormer). In particular, water bodies, urban, and 
forests have nearly identical semantic segmentation profiles to those in 
GT. There is, notwithstanding, considerable room for improvement in 
HighDAN, to further enhance the identification and recognition ability 
in Arable Land, Street Network, and Inland Wetlands. 

In addition to the scene-wide segmentation visualization, we also 
provide detailed segmentation results in sub-regions, as shown in 
Figs. 10 and 11 corresponding to Figs. 8 and 9, respectively. The visual 
comparison of local semantic segmentation results highlights the 

Fig. 8. Visualization of semantic segmentation results obtained by successively using DeepLab, SegNet, FastFCN, AdaptSeg, DSAN, DualHR, SegFormer, and our 
proposed HighDAN on C2Seg-AB (testing set: Berlin) datasets. 

Fig. 9. Visualization of semantic segmentation results obtained by successively using DeepLab, SegNet, FastFCN, AdaptSeg, DSAN, DualHR, SegFormer, and our 
proposed HighDAN on C2Seg-BW (testing set: Wuhan) datasets. 
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advantages of the proposed HighDAN in terms of preserving fine- 
grained details of objects in RS images. Further, HighDAN is capable 
of effectively capturing small-scale features and details of the objects. 
This was particularly evident in the cases of man-made objects with 
intricate shapes and textures, where HR-Net-based models (i.e., DualHR, 
HighDAN) are apt to segment the objects without losing important de-
tails. In comparison, the baseline methods, such as DeepLab and SegNet, 
yield segmentation results with a severe loss of detailed information, 
which shows their limitations in capturing tiny and irregular objects or 
structures. While other compared methods have demonstrated some 
improvement in identifying semantic categories with varying shapes, 
their ability in recognition accuracy and boundary segmentation re-
mains limited. Yet the visual analysis also reveals that our HighDAN can 
effectively adapt to changes in imaging conditions and variability in 

object appearance across domains or cities, resulting in improved seg-
mentation accuracy and robustness. It should be noted, however, that 
some categories are almost entirely misclassified in certain sub-images, 
such as Artificial vegetated areas, Open spaces with no vegetation, Inland 
wetlands, Shrub. To sum up, these observations highlight the need for 
continued exploration and optimization of semantic segmentation 
methods in the aspects of HR feature extraction and DA enhancement. 

To further assess the effectiveness of our proposed HighDAN model 
in extracting class-related semantic information, we visualize class 
activation maps (CAMs) (Zhou et al., 2016) on the C2Seg-AB datasets, as 
shown in Fig. 12. These visualizations demonstrate that HighDAN excels 
in capturing high-level semantic information with precise class activa-
tion, even for small classes, e.g., Street Network. This capability un-
derscores the model’s proficiency in semantic segmentation tasks. 

Fig. 10. Visualizing semantic segmentation results of sub-regions corresponding to Fig. 8 for all compared models.  
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5.4. Ablation study 

The proposed HighDAN takes the multimodal HR-Net as the network 
backbone, which consists of several key modules, such as multimodal 
HR encoder (Bottleneck + HR), DA (Feature-level DA + Category-level), 
and Dice loss. To evaluate the importance of these modules for cross-city 
semantic segmentation using multimodal RS data, we implement the 
ablation study on C2Seg-AB datasets. Table 4 details the performance 
gain by combining different components in terms of OA, mIoU, and mF1. 

SegNet follows the classic encoder-decoder backbone and serves as 
the baseline (without any advanced components involved), yielding 
relatively poor segmentation performance. By integrating the bottleneck 
and the advanced HR feature extractor, HR-Net significantly improves at 
an increment of 6.45% OA, 6.30% mIoU, and 8.21% mF1. With the Dice 

loss, HR-Net considers the class imbalance issue and shows competitive 
results, but without DA, it inevitably meets the performance bottleneck 
in the cross-city task. The adversarial DA strategy bridges the gap across 
domains effectively from feature-level and category-level perspectives. 
HighDAN demonstrated a noteworthy improvement in OA, with a sub-
stantial 6% enhancement over HR-Net, and exhibited remarkable in-
creases of approximately 5% in the pivotal semantic segmentation 
metrics, i.e., mIoU and mF1. Notably, balancing samples of different 
categories via Dice loss also plays a prominent role in HighDAN. As can 
be seen from Table 4, HighDAN with Dice loss can further improve the 
cross-city semantic segmentation performance by at least 1.2% OA 
based on that without the loss. We also present results that facilitate a 
comparison between scenarios involving HS data and those without HS 
data in terms of OA, mIoU, and mF1: (57.66%, 35.19%, 24.76%) vs. 

Fig. 11. Visualizing semantic segmentation results of sub-regions corresponding to Fig. 9 for all compared models.  
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(53.91%, 31.81%, 21.74%). 
In addition, we presented the results, which included training loss, 

OA, mIoU, and mF1, for individual datasets using an 8:2 training and 
testing ratio, specifically focusing on C2Seg-AB. This comprehensive 
evaluation process allowed us to assess the performance and robustness 
of the proposed HighDAN model. Fig. 13 illustrates that the training loss 

of the model exhibits a consistent decrease throughout the training 
process, indicating the model’s stability and robust convergence during 
learning. As expected, there is a similar trend in segmentation perfor-
mance (i.e., OA, mIoU, mF1) across individual C2Seg-AB datasets. 

Fig. 12. Visualization of class activation maps (CAMs) using HighDAN on the C2Seg-AB datasets.  

Table 4 
Ablation analysis on C2Seg-AB datasets, where ‘Bottleneck’ and ‘HR’ represent the bottleneck feature extraction module and the high-resolution module, while 
‘Feature DA’ and ‘Category DA’ denote feature-level domain adaptation module and category-level domain adaptation module, respectively. The best results are 
marked in bold.  

Model Bottleneck HR Feature DA Category DA Dice Loss OA (%) mIoU (%) mF1 (%) 

SegNet ✘ ✘ ✘ ✘ ✘ 43.40 12.65 19.59 
HR-Net ✘ ✓ ✘ ✘ ✘ 48.53 15.86 23.35 
HR-Net ✓ ✓ ✘ ✘ ✘ 49.85 18.95 27.80 
HR-Net ✓ ✓ ✘ ✘ ✓ 50.59 19.90 29.04 
HighDAN ✓ ✓ ✘ ✓ ✓ 53.74 20.62 29.84 
HighDAN ✓ ✓ ✓ 55 ✓ 52.73 21.51 31.09 
HighDAN ✓ ✓ ✓ ✓ ✘ 56.44 24.03 34.32 
HighDAN ✓ ✓ ✓ ✓ ✓ 57.66 24.76 35.19  

Fig. 13. Performance analysis of the proposed HighDAN in robustness in terms of training loss, OA, mIoU, and mF1 score on the individual C2Seg-AB datasets.  
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6. Conclusion 

Fast monitoring and understanding of urban environments are 
inseparable from explosively developing RS techniques. The success of 
RS enables the accurate identification and detection of materials of in-
terest in complex urban scenes. As a primary and indispensable research 
topic, the semantic segmentation of RS images has long dominated the 
overwhelming role in the land use land cover classification of urban 
environments. However, these well-designed and dedicated segmenta-
tion methodologies are, for the most part, applicable only to one single 
city case. This severely hinders the application deployments across cities 
or regions, since urban planning and management, e.g., policy-making, 
land use, spatial layout, information transfer, etc., have to accommodate 
multi-city studies. 

For the reason mentioned above, we in this paper focus on investi-
gating cross-city semantic segmentation and provide solutions accord-
ingly. The solutions are two-fold. On the one hand, we build a 
multimodal RS benchmark dataset (i.e., C2Seg) to solve the issue of 
insufficient discriminative information by only using single modality RS 
data for cross-city semantic segmentation. On the other hand, we pro-
pose a cutting-edge deep network architecture, HighDAN for short, by 
embedding the adversarial learning-based DA’s idea into HR-Net with 
Dice Loss (to reduce the effects of the class imbalance), making it largely 
possible to break the semantic segmentation performance bottleneck in 
terms of accuracy and generalization ability from cross-city studies. 
Extensive experiments conducted on the C2Seg datasets demonstrate 
that our HighDAN achieves the best segmentation performance, which 
beats other SOTA competitors in almost all important indices. Moreover, 
we will also release the C2Seg benchmark datasets and the corre-
sponding source codes, contributing to the interpretation research of 
urban environments across cities. 

In future work, we aim to extend the C2Seg datasets in a wide range 
of cities on a national scale and even a global scale for the better study of 
cross-city semantic segmentation. In particular, the development of 
hyperspectral RS, especially concerning its application on a large scale, 
is indeed an issue that warrants urgent attention and exploration, due to 
certain inherent imaging constraints associated with hyperspectral RS 
technology. Furthermore, more advanced AI models should be devel-
oped and made accessible by further considering explicit and explain-
able knowledge embedding, e.g., geometric priors, climate 
characteristics, and urban morphological properties, to guide deep 
networks to learn more accurate segments and promote the model’s 
generalization ability across cities. 
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