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Abstract— Convolutional neural networks (CNNs) have
recently achieved outstanding performance for hyperspectral
(HS) and multispectral (MS) image fusion. However, CNNs
cannot explore the long-range dependence for HS and MS image
fusion because of their local receptive fields. To overcome this
limitation, a transformer is proposed to leverage the long-range
dependence from the network inputs. Because of the ability of
long-range modeling, the transformer overcomes the sole CNN
on many tasks, whereas its use for HS and MS image fusion
is still unexplored. In this article, we propose a spectral–spatial
transformer (SST) to show the potentiality of transformers for
HS and MS image fusion. We devise first two branches to extract
spectral and spatial features in the HS and MS images by SST
blocks, which can explore the spectral and spatial long-range
dependence, respectively. Afterward, spectral and spatial features
are fused feeding the result back to spectral and spatial branches
for information interaction. Finally, the high-resolution (HR) HS
image is reconstructed by dense links from all the fused features
to make full use of them. The experimental analysis demonstrates
the high performance of the proposed approach compared with
some state-of-the-art (SOTA) methods.

Index Terms— Deep learning (DL), hyperspectral (HS) imag-
ing, image fusion, multispectral (MS) imaging, remote sensing,
transformer.

I. INTRODUCTION

DUE to some physical limitations in imaging sen-
sors, hyperspectral (HS) images with abundant spectral

information always get a low spatial resolution. On the
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other hand, multispectral (MS) images with limited spectral
information can achieve a high spatial resolution. However,
high-resolution (HR) HS (HRHS) images are preferred for
many downstream tasks, such as classification [1] and assess-
ing grain yield [2], due to their rich spectral and spatial
information. Therefore, to obtain HRMS images, researchers
studied methods to fuse low-resolution (LR) HS (LRHS) and
HRMS images.

Deep-learning (DL) methods are one of the most effective
ways to address the HS and MS image fusion task. Many
deep convolutional neural networks (CNNs) have been pro-
posed for HS and MS image fusion because of their strong
learning ability. Although CNNs can achieve state-of-the-
art (SOTA) performance for HS and MS image fusion, its
inherent limitation about local receptive fields makes it hard to
capture long-range dependence. Nevertheless, the long-range
dependence is a significant cue for HS and MS image fusion in
twofold. On the one hand, the spatial long-range dependence
enables the network to reconstruct details and structures by
pixel similarity, which is relevant for remote sensing images,
where similarities among different areas of the image, showing
a similar landscape (e.g., similar buildings and lands), can
easily be found. On the other hand, we can explore the spectral
long-range dependence to maintain the spectral features of HS
images, in particular, when we deal with HS images with a
relevant number of spectral bands.

Some common ways to capture the long-term dependence is
to improve the receptive fields by larger kernel size, pooling,
deeper networks, or dilated convolution. However, these meth-
ods still capture local features in each layer. The use of kernels
with large sizes and deep networks leads to considerable
parameters. Pooling always suffers from information loss,
as for dilated convolution that can also lead to checkerboard
artifacts. To alleviate the above limitations, attention and
transformer [4], [5] have been proposed to capture the long-
range dependence. Constructed by multihead attention, the
transformer model is proposed to fully leverage the long-range
dependence of its inputs. Benefiting from its strong capabil-
ity of modeling long-range dependence, transformer achieves
SOTA performance on many tasks, see, e.g., machine transla-
tion [4], image recognition [6], HS image classification [7],
[8], [9], [10], image restoration [11], spectral reconstruc-
tion [12], and image super-resolution [13], [14]. However,
their use is still unexplored for HS and MS image fusion.
Although two recent reports [15], [16] available online adopted
transformer for HS and MS image fusion, the transformer
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Fig. 1. Comparison of the spectral signatures between the proposed network
(our SST), which considers both spectral and spatial dependence, and the
baseline (SWINHS) relied upon the SWIN transformer block [3] and only
considering the spatial dependence. In (a), the sampling points are depicted,
marked by the red star, triangle, and square related to (b)–(d), respectively.
GT stands for the ground truth.

blocks were directly adopted from [3] and [17], without any
dedicated design for HS and MS image fusion. Besides, both
of them only explored spatial transformer blocks (SpaTs), thus
neglecting the spectral dependence. Unlike the transformer
blocks in [3], [11], and [16], we devise the spectral and spatial
transformer (SST) blocks to build two branches in the network
dedicated to the spectral and spatial information, respectively.
As shown in Fig. 1, we can observe that the proposed SST
achieves better spectral preservation than the one built by
considering only SpaTs.

Specifically, we propose an SST for HS and MS image
fusion, in which two branches are dedicated to extracting spec-
tral and spatial features, named spectral and spatial branches,
respectively. The spectral branch built by spectral transformer
blocks (SpeTs) enhances the spectral features by explor-
ing channel correlation representing the spectral dependence,
while the spatial branch built by SpaTs enhances the spatial
features by exploring pixel correlation in the spatial domain.
Afterward, the enhanced spectral and spatial features are fused
by a simple fusion module. The fused features will further
transfer and fed back into the spectral and spatial branches
for information interaction. Finally, to fully use the fused
features, these latter are connected to the final layer by dense
links to reconstruct the HRHS image (the so-called dense
reconstruction).

The contributions of this work can be summed up as
follows.

1) To exploit the long-range spectral and spatial dependen-
cies in HS and MS images, we propose an SST for HS
and MS image fusion. In the spectral transformer branch,
spectral features and long-range spectral dependency
are explored, which contribute to spectral preservation.
In the spatial transformer, spatial features and long-range

spatial dependency are considered, which contribute to
spatial detail enhancement.

2) To reduce the computational burden for attention,
an adaptive calculation based on the associative rule is
proposed for both spectral and spatial attention. In the
spectral attention, pooled spectral features are calculated
for further computational reduction. Because of these
solutions, the proposed SST can reduce the computation
and simultaneously capture global dependency.

3) To fully fuse spectral and spatial information, each
spatial–spectral transformer block pair is followed by
a fusion module to aggregate spatial and spectral fea-
tures, and these fused features are densely connected to
reconstruct the fused product.

4) To achieve an extremely lightweight transformer [fewer
than 1M parameters and 20G float point operations
(FLOPs)] for HS and MS image fusion, a spectral
transformer based on the sole SpeT is proposed.

This article is organized as follows. Section II briefly
reviews HS and MS image fusion. Afterward, Section III
presents the proposed SST. Experimental results, even includ-
ing the presentation of the exploited data and benchmark for
comparison, are shown in Section IV. Finally, the conclusions
are drawn in Section V.

II. RELATED WORKS

In this section, we focus on reviewing the HS and MS
image fusion, with a special focus on DL-based methods,
and a brief review of long-range exploration in DL, such
as self-attention, nonlocal networks, and transformers. For a
more comprehensive review about HS and MS image fusion,
interested readers can refer to [1], [18], [19], [20], [21], and
[22]. Readers interested in transformers can refer to [23], [24],
[25], and [26] for more details.

A. Classical Methods for HS and MS Image Fusion
Most early HS and MS image fusion methods origi-

nate from pansharpening [19], [27], including component
substitution (CS) and multiresolution analysis (MRA)-based
methods. Chen et al. [28] introduced spectral-coverage-based
band assignment to group HS and MS bands and adopted
Gram–Schmidt adaptive (GSA) [29] to pansharpen HS bands
in each group. According to the criterion of minimizing
a spectral distortion, Picone et al. [30] presented a spectral
angle mapper (SAM)-based [31] band assignment method for
adapting pansharpening methods to HS and MS image fusion.
Rather than using a band assignment method, Selva et al. [32]
synthesized, for each HS band, a related HR band from MS
images by using a regression framework. Afterward, the gen-
eralized Laplacian pyramid (GLP) with a matched modulation
transfer function (MTF) [33] approach is used to fuse the syn-
thesized HR band and the corresponding HS band. Although
these methods are efficient and easy to implement, they often
encounter spectral and/or spatial distortions. Zhang et al. [34]
utilized convolutional sparse decomposition for the fusion of
MS and panchromatic images.

In matrix factorization methods, LRHS and HRMS images
are always factorized into spectral bases and a matrix of
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coefficients [20]. Dong et al. [35] used an over-completed
dictionary to construct the bases obtaining the coefficients
by sparse coding. Simoes et al. [36] learned the bases in
a low-rank subspace by vertex component analysis (VCA).
Yokoya et al. [37] proposed a coupled nonnegative matrix fac-
torization (CNMF) to alternatively update the bases and coef-
ficients. Recently, some tensor factorization methods have also
been proposed. Xu et al. [38] explored nonlocal coupled tensor
decomposition for HS and MS image fusion. Dian et al. [39]
presented a low tensor-train rank-based method to fuse HS and
MS images. Li et al. [40] introduced a coupled sparse tensor
decomposition for HS and MS image fusion. Prévost et al.
[41] used the truncated singular value decomposition (SVD)
to obtain the dictionaries of image tensors efficiently reducing
the computational cost by reliable core tensor estimation for
HS and MS image fusion.

B. DL Methods for HS and MS Image Fusion
Similar to classical methods, most DL-based pansharpening

methods can also be applied to LRHS and HRMS image fusion
by easily changing the input and output channels for the first
and the last convolutional layers. Masi et al. [43] proposed
the first CNN, named PNN, for pansharpening inspired by
Dong et al. [44]. To boost the performance of flat CNNs with
shallow networks for pansharpening, Wei et al. [45] intro-
duced residual learning to build a deep network. For superior
spectral and spatial preservation, PanNet [46] received the
high-passed MS image and panchromatic images rather than
the original images. Besides, DL has also been proposed
specially to fuse LRHS and HRMS images. We can roughly
divide DL methods into two categories, i.e., supervised DL
methods and unsupervised DL methods.

For supervised DL methods, Dian et al. [47] proposed to
reconstruct the HRMS image from an initial HRMS acquired
by a model-based method. Xie et al. [48] incorporated the
low-rank prior into the deep CNN and proposed an inter-
pretable network for HS and MS image fusion. Han et al. [49]
presented a multiscale deep CNN to progressively increase
the size of the features of the HS image, finally obtaining the
reconstructed HRMS image. Fu et al. [50] proposed a multi-
scale detail network for MS image sharpening. Xie et al. [51]
extracted a deep prior by injecting high frequencies with a
deep residual mapping into a transformed HS image adding
a further constraint in a Sylvester equation. Zheng et al. [52]
acquired edge maps by applying the Sobel operator to features
extracted from the RGB band of the HRMS images using
a pretrained model, and then utilized a feature fusion and a
transform network to fuse features extracted from HS and MS
images conditioned on the acquired edge maps to avoid loss of
sharp edges in deep networks. Formulating the HRMS image
as the multiplication of a subspace and spatial coefficients,
Dian et al. [53] applied SVD to obtain the subspace and
achieve the coefficients via the maximum posterior criterion
regularized by a CNN denoiser. Hu et al. [54] introduced a
spatial–spectral attention CNN, named HSRnet, for HS and
MS image fusion. Guided by an observation model for HS
images, Dong et al. [55] unfolded an iteration reconstruction
and denoising for HS and MS image fusion by deep networks.

In addition to the above-mentioned supervised DL methods,
there are also some works exploring unsupervised learning
for HS and MS image fusion. Qu et al. [56] proposed the
first unsupervised DL method for HS and MS image fusion
by an encoder–decoder architecture, into which the sparse
Dirichlet distribution is incorporated to force the physical
constraints for spatial coefficients, i.e., sum-to-one and non-
negative coefficients. Wang et al. [57] proposed a deep blind
iterative fusion network to estimate the observation model and
to alternatively fuse HS and MS images. Uezato et al. [58]
presented a guided deep decoder for paired image fusion,
which could also be trained by unsupervised learning without
training data. The encoder exploited the multiscale features
from MS images, and then generated the HRHS image by
decoder with the guidance of the multiscale features from
the encoder. Yao et al. [59] proposed a coupled unmixing
network with cross attention for unsupervised HS and MS
image fusion. They unmixed the HS and MS images into
spectral bases and coefficients by deep networks learning
the spectral response function and point spread function by
two simple layers based on the assumption that the degraded
LRHS and HRMS images from the reconstructed HRHS
image are consistent with the LRHS and HRMS data in the
input. Zheng et al. [60] proposed a network to adaptively learn
the spectral response functions. Taking middle results from
self-supervised learning, Wei et al. [61] proposed to recur-
rently refine the reconstructed HRMS image for unsupervised
HS and MS image fusion. Formulating the degradation by
a convolutional layer and full connection for LRHS and
HRMS images with zero-mean Gaussian prior, respectively,
Zhang et al. [62], [63] introduced an image-specific network
optimized by a loss function for unsupervised blind HS and
MS image fusion. Diao et al. [64] proposed an unsupervised
GAN to fuse MS and panchromatic images.

C. Long-Range Dependence in DL
Long-range dependence is an important cue for many

signal processing tasks, such as image deraining [65], human-
skeleton motion prediction [66], and activity recognition [67].
However, the early CNNs rarely explored the long-range
dependence due to the inherited limitation of local recep-
tive fields until nonlocal networks [5], graph convolutional
networks (GCNs) [65], attention [4], and transformer [3],
[4] were proposed. Although GCNs and nonlocal networks
can explore long-range dependence, our SST differs from
them in four aspects. First, the architectures of the over-
all network and the building blocks are different among
the proposed network, [5] and [65], i.e., GCN or nonlocal
blocks versus transformer blocks. Second, although GCN
(with graph built by all pixels) and nonlocal module can be
seen as attention, they only have one head attention, while the
transformer is built by multihead attention and feed-forward
networks (FFNs). Vaswani et al. [4] demonstrated that multi-
head attention can capture the long-range dependence from
multiple subspaces, while GCN and nonlocal modules capture
the long-range dependence from the entire feature space.
In our experiments, we will show the performance compar-
ison between one-head and multihead attention, noting that
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Fig. 2. (a) Architecture of the proposed SST. (b) Proposed SpeT. (c) Attention module (AT) in SpeMA and SpaMA. (d) Proposed SpaT. (e) Legend. “GELU”
is the nonlinear activation function [42], “Group” refers to a group convolution, “(K × K )” refers to the kernel size of the convolution, and “FUSE” is
achieved by a (1 × 1) convolution.

multihead attention achieves better results for HS and MS
image fusion. Besides, the FFN is also important for the
fusion of features from multihead attention, as discussed in
Section IV-D2. Third, softmax is used to avoid numerical
instabilities and normalize features in [65], while we use
rectified linear unit (ReLU) and inner production to this aim.
Compared with softmax, ReLU and inner production have
smaller computational complexity. Finally, the purpose of the
spectral transformer is to explore spectral dependency in HS
images, while the purpose of channel GCN in [65] is to explore
feature channel dependence for image deraining. Noteworthy,
it is hard to explore spectral dependency in [65], since there is
a little spectral dependency for RGB images in the deraining
task.

To explore long-range dependence in image fusion, recently,
Meng et al. [68] proposed a visual transformer for MS and
panchromatic image fusion. Zhou et al. [69] combined the
transformer and the invertible neural network for pansharpen-
ing. Two transformer-based HS and MS image fusion methods
have also been reported. Hu et al. [15] integrated spatial
transformer into an encoder–decoder architecture for HS and
MS image fusion. Ma et al. [16] took the transformer as a prior
for HS and MS image fusion. Unlike their works, which apply

the existing transformer blocks, we design transformer blocks
dedicated to the HS and MS image fusion problem. Moreover,
our SST considers both spatial and spectral transformers, while
the abovementioned works only consider a spatial transformer.
Finally, we adopt the inner production for normalization to
obtain the attended features rather than softmax, and we
further use a switcher to adaptively choose a calculation order
for reducing the computation; see (13).

III. METHODOLOGY

This section is devoted to the description of the adopted
methodology. The overview of the architecture of the proposed
SST will be presented first. Afterward, the SST blocks will be
detailed.

A. Architecture of SST
As shown in Fig. 2, our SST has two branches, where the

upper branch, named the spectral branch, consists of several
SpeTs, while the bottom branch, named the spatial branch,
is obtained by several SpaTs. The dual-branch architecture is
motivated by the philosophy of divide and conquer, which
means that the spectral transformer branch is dedicated to
exploring spectral information, while the spatial transformer
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is devoted to the exploration of spatial information. In the
middle of the two branches, a simple fusion module (i.e., the
concatenation followed by a pointwise convolution in Fig. 2)
after each pair of SpeT and SpaT is utilized to fuse spectral and
spatial features as well as establishing information exchange
between them.

Given the LRHS image, X ∈ RC×h×w (with height, w,
width, h, and number of bands, C), and the HRMS image,
Y ∈ Rc×H×W (with height, W , width, H , and number of
bands, c), a convolution in each branch is used first to extract
the initial spectral or spatial features. For the spectral branch,
the LRHS image and the downsampled HRMS image are
adopted as input. Therefore, the initial spectral features, S0,
are obtained by

S0 = fs([↓ (Y),X ]) (1)

where fs(·) denotes the convolution operation. The filter num-
ber can be regarded as the number of the spectra bases, so that
each channel in S0 can be seen as the spectral feature for a
specific spectral basis. ↓ (·) is the downsampling operator,
and [·] represents the concatenation operation. For the spatial
branch, we argue that spatial features should derive from
both the LRHS and the HRMS image, since the low-frequent
information and the high-frequent information in the fused
production are from the LRHS image and the HRMS image,
respectively. Therefore, we concatenate the interpolated LRHS
image with the HRMS as input for the spatial branch. Specif-
ically, the initial spatial features, H0, are extracted as follows:

H0 = fh([Y, ↑ (X )]) (2)

where fh(·) refers to the convolution operation and ↑ (·)

denotes the upsampling operator.
Afterward, the spectral and spatial features are separately

fed to SpeT and SpaT. To increase the capacity of the network,
we sequentially stack L SpeTs or SpaTs in these two branches.
More specifically, each SpeT is used to enhance the input
spectral features by exploring the spectral dependency, while
each SpaT does similar work for spatial features by exploring
spatial dependency. Focusing on the lth SpeT and SpaT,
we have

S ′

l = f l
spet(Sl−1) (3)

H′

l = f l
spat(Hl−1) (4)

where f l
spet(·) and f l

spat(·) denote the functions of the lth (1 ≤

l ∈ Z ≤ L) SpeT and the lth SpaT in the spectral and spatial
branches, respectively; S ′

l and H′

l are the outputs of SpeT and
SpaT, respectively; and Sl−1 and Hl−1 are the inputs of the
SpeT and SpaT, respectively, which can be obtained by (1)
and (2) or (6) and (7).

The enhanced spectral and spatial features are then fused by
the fusion module between the two branches. Thus, we have

Fl = f l
pw

([
S ′

l , ↑
(
H′

l

)])
(5)

where f l
pw(·) denotes the pointwise convolution for fusion.

To enable information interaction between spectral and spatial
features, the fused features are taken as residual features to
be added back to the spectral and the spatial branches. Since

the fused features have a different size from that of spec-
tral features, a transfer function achieved by downsampling
followed by pointwise convolution is applied to change the
size before adding it back to the spectral branch. The transfer
function can also play the role of transferring features from
the spectral–spatial domain to the spectral domain. Hence, the
input features for the next SpeT and SpaT are obtained as
follows:

Sl = S′

l + f l
t (↓ (Fl)) (6)

Hl = H′

l + Fl (7)

where ↓ (·) denotes the downsampling operation and f l
t (·)

refers to the pointwise convolution for the transferring. Since
the last fused features are no longer fed back to the spectral
and spatial branches, the index l in (6) and (7) belongs to
{1, 2, . . . , L − 1}.

Finally, the fused image, Z , is obtained by adding the
interpolated LRHS image and the residual image reconstructed
from the fused features obtained by each fusion module, FL .
Thus, we have

Z =↑ (X ) + frec( f f ([F1,F2, . . . ,FL ])) (8)

where f f (·) is a pointwise convolution to fuse all the fused
features and frec(·) denotes the convolution related to residual
image reconstruction.

B. Spectral Transformer Block

As shown in Fig. 2(c), the SpeT consists of a spectral
multihead attention (SpeMA) module and an FFN. In SpeT,
spectral features are enhanced first by the spectral attention
representing the channel dependency. Then, the enhanced
spectral features are fed into the FFN to fuse them. Similar to
most transformer blocks [3], [11], residual learning is adopted
for both SpeMA and FFN. Therefore, the formulation of the
lth SpeT is as follows:

Sma
l−1 = Sl−1 + fspema(Sl−1) (9)

S ′

l = Sma
l−1 + fffn1,l

(
Sma

l−1

)
(10)

where Sl−1 and S ′

l are the input and the output of the SpeT,
Sma

l−1 is the output of the SpeMA, fspema(·) is the SpeMA
function, and fffn1,l(·) denotes the FFN function in the SpeT
module consisting of a pointwise, a group, and a pointwise
convolution, as shown in Fig. 2(c).

In SpeMA, spectral features are transferred in query, key,
and value. Differently from the way of general transformer
blocks to obtain the query, the key, and the value, we obtain
the query and the key by a sequential combination of pooling,
reshaping, and full connection, while obtaining the value
by a pointwise convolution and reshaping. The pooling in
generating query and key is used for two reasons: 1) we
think the pooled matrix is enough to represent the spectral
features for a channel in the query and key, as shown in the
experiments in Section IV-D3; this is also corroborated by
Hu et al. [54], where the global average pooling can capture
the spectral dependence for HS and MS image fusion and
2) the pooling operation can reduce the dimension of the fea-
tures for calculating the channel dependency, thereby reducing
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the computational burden for SpeMA. Besides, the ReLU [70]
is applied to the query and the key for nonnegative values.
Specifically, the query, Q ∈ RC×M P2

(where M is the head
number of attention and P is the output size of pooling),
the key, K ∈ RC×M P2

, and the value, V ∈ RC×hw, can be
formulated as follows:

Q = δ( ffc(R(P(S))))

K = δ( ffc(R(P(S))))

V = R( fpw(S)) (11)

where P(·) represents the average pooling operation, R(·)

refers to the reshape operation, ffc(·) denotes the full con-
nection, and δ(·) is the ReLU function.

Afterward, the query, key, and value are split into M parts,
and each part of them is fed into a head of an attention module,
as shown in Fig. 2(b). Unlike the classical self-attention in [4],
the proposed SST utilizes ReLU in (11) and inner production
in (12) to obtain the normalized similarity matrix instead
of a softmax layer. Thus, our SST has two advantages in
calculating self-attention. First, the softmax layer with com-
plicated exponent arithmetic is replaced by the simple ReLU,
thereby reducing the computational complexity. Second, the
normalization of the similarity matrix by inner production,
instead of softmax, enables the associative rule to hold in the
formula, thus reducing again the computational complexity of
the classical self-attention. Specifically, the attention module
can be formulated as follows:

Um
c =

∑C
j=1 Qm

c

(
Km

j

)T Vm
j∑C

j=1 Qm
c

(
Km

j

)T
+ ϵ

(12)

where Qm
c ∈ R1×P2

is the query of the cth band fed into
the mth head of attention, Km

j ∈ R1×P2
and Vm

j ∈ R1×(hw/M)

are the key and value of the j th band fed into the mth head
of attention, Um

i is the reweighted values of the query, i.e.,
the cth band output by the mth head of attention, and ·

T is
the transpose operator. Rather than using the softmax function
to normalize, we use

∑C
j=1 Qm

c (Km
j )T

+ ϵ to normalize the
numerator; thus, we can leverage the associative rule in (12) to
reduce the computation complexity and memory-consuming.
ϵ equal to 10−7 is used to avoid a zero denominator. Further-
more, the reweighted spectral features from all the heads are
concatenated and reshaped to the size of the input spectral
features, i.e., C × h × w. To adaptively choose the least
computations and memory consuming for (12), we switch the
computation order to obtain the reweighted features according
to the input size as follows1:

Um
=


Qm(Km)T Vm

sum(Qm(Km)T , dim = 1) + ϵ
, if Condition-1

Qm((Km)T Vm)

Qmsum((Km)T , dim = 1) + ϵ
, otherwise

(13)

1Noteworthy, this equation is formulated considering all the channels
simultaneously instead of a specific cth channel in (12), and it is formulated
using the PyTorch style with broadcasting of shape.

where sum(·, dim = 1) refers to the sum of the items in the
matrix along the row axis. Condition-1 is as follows:

C M P2C + CChw < M P2Chw + C M P2hw

⇐⇒ M P2C + Chw < 2M P2hw (14)

used to judge if the computations of the first equation in (13)
are smaller than the second one.

Finally, a group convolution is utilized to fuse and project
the reshaped spectral features; i.e., the output of the SpeMA
is obtained by

Sma
= fgc,K (Uspe, C) (15)

where the values of Uspe ∈ RC×h×w are the reshaped spectral
features and fgc,K (·, C) denotes the function of the group
convolution with C groups to fuse spectral features in a
neighborhood of K × K .

C. Spatial Transformer Block

The architecture of the SpaT shown in Fig. 2(d) is similar
to the SpeT containing again two modules in the residual
structure, i.e., the spatial multihead attention (SpaMA) and the
FFN. The use of SpaMA instead of SpeMA is the only differ-
ence between SpaT and SpeT. SpaMA differs from SpeMA,
because SpeMA relied upon the band (spectral) dependency
to reweigh spectral features, while SpaMA explores the spatial
dependency to reweigh spatial features.

The query, Q ∈ RH W×D (where D is the number of
channels of the spatial features), the key, K ∈ RH W×D ,
and the value, V ∈ RH W×D , in SpaMA are generated by
a pointwise convolution and a reshape operation. Similar to
SpeMA, the ReLU is applied to the query and the key. Then,
the query, the key, and the value are split into M heads of
attention. On the other hand, the formula differs from (12),
since its purpose is to use the spatial similarity to reweigh the
MS features, while the purpose of (12) is to utilize channel
similarity to reweigh the input HS features. Each attention
module can be formulated as follows:

Um
i =

∑H W
j=1 Qm

i

(
Km

j

)T Vm
j∑H W

j=1 Qm
i

(
Km

j

)T
+ ϵ

(16)

where Qm
i ∈ R1×D is the query at the i th pixel fed into the mth

head of attention, Km
j ∈ R1×D and Vm

j ∈ R1×D are the key
and the value at the j th pixel fed into the mth head attention,
and Um

i is the reweighted value at the query, i.e., the i th pixel
output by the mth head of attention. Afterward, the outputs
of the M heads of attention are concatenated and reshaped to
the input the features’ size (i.e., D × H × W ). Similar to
spectral attention, a switcher equation, such as (13), is used
in the spatial attention to achieve the lowest computational
burden for (16). Finally, a convolutional layer is used to fuse
the features by all the heads of attention. Consequently, the
output of the SpaMA is formulated as follows:

Hma
= fc(Uspa) (17)

where the values of Uspa ∈ RD×H×W are the reshaped spatial
features and fc(·) denotes the convolution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on September 07,2023 at 10:20:14 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: SPECTRAL–SPATIAL TRANSFORMER FOR HYPERSPECTRAL IMAGE SHARPENING 7

IV. EXPERIMENTS

This section is devoted to the presentation of the experi-
mental results. Details about how to implement the proposed
approach and the training phase will be presented first. After-
ward, the datasets will be described. Finally, the performance
in comparison with SOTA methods and an ablation study will
be provided to readers.

A. Network and Training Details

1) Networks Details: Similar to most networks [55], the
ℓ1 norm is adopted as the loss function to train the network.
According to the experiments in Section IV-D3, we empirically
set L in (5) to 14, P for generating spectral query and key
in (11) to 4, K in (15) to 9, M for the head numbers in (12)
and (16) to 8, and both C in (12) and D for spatial features
in (16) to 120.

2) Training Details: All the networks in this article are
trained using the same training set with 105 iterations for a fair
comparison. The batch size and the LRHS patch size are set
to 8 and 18 × 18, respectively. The Adam [71] optimizer with
default setting and initial learning rate of 0.0002 is used for
training. The learning rate is halved every 2 × 104. The official
(available online) code is used for the compared networks
tuning their parameters to get the best results.

B. Datasets

Three datasets are adopted in this article, including a natural
image dataset, i.e., CAVE [72], one synthetic (widely used)
remote sensing image set, i.e., Chikusei [73], and one real
remote sensing image set, i.e., Hyperion/ALI.

1) The HS images in CAVE have 31 bands with a wave-
length range from 400 to 700 nm. Similar to [54],
20 images are randomly used as the training set, and
11 images are used as the test set. We generated the
LRHS image by a Gaussian filter with a support (2×

s − 1) and standard deviation of 1.5, where s =

4 is the scale ratio between HRHS and LRHS. The
HRMS images are synthesized by the relative spectral
response function of the Nikon-D700. For the training
set, we cropped the LRHS images into patches with
a size of 32 × 32 without overlapping them; 20% of
training samples have been adopted randomly as the
validation set.

2) We select 120 bands for HS images cropping them to
reach the size of 2400 × 2200 pixels in our Chikusei
experiments. We split first the datasets into training
and test sets without any overlap and with a ratio of
8:2. Then, 20% of the training area is chosen as the
validation set. Finally, we split HRHS images for the
training, the validation, and the test sets into 96 ×

96 patches. To generate the LRHS image, we exploit
the MTFs of the Hyperion sensor imposing a scale
ratio of 3. To synthesize the HRMS images, we applied
the estimated spectral response coefficients (obtained
by the nonnegative least square from the HS and MS
pairs acquired by Hyperion/ALI) to the HRHS images.

The spectral response coefficients are estimated using
images captured over the area of Shenzheng, China. The
synthetic HRMS images have nine bands.

3) For the Hyperion/ALI dataset, we collect first
real HS and MS image pairs from the United
States Geological Survey (USGS) website.2 Then,
we remove noisy bands retaining 120 bands for HS
images. Afterward, we cropped the overlapped areas
between HS and MS images registering them by
Vivone et al. [74] and Guizar-Sicairos et al. [75].
Finally, we acquired seven HS/MS image pairs from
different areas: 1) three areas in China, i.e., Suzhou,
Zaozhuang, and Beijing; 2) Melbourne, Australia;
3) Paris, France; 4) Layaffete, USA; and 5) London,
U.K. We adopted the Melbourne and Paris datasets as
validation and test sets, respectively, and the remaining
datasets as the training set. Similar to Chikusei, the
MTFs of the Hyperion sensor imposing a scale ratio
of 3 are exploited to generate the LRHS images. For
the training set, we divided HRHS images into 96 ×

96 patches. For validation and test sets, we cropped
HRHS images into 189 × 189 patches.

For all the abovementioned training sets, we adopted ran-
dom cropping, rotation, and flipping to increase the number
of training samples. Specifically, the samples and image sizes
for each dataset are shown in Table I. The reported results in
all the tables in this article always refer to an average outcome
on all the test/validation samples.

C. Comparison With SOTA Methods

1) Benchmark: In this section, we compared our SST and
SPE (a lightweight network consisting of the only proposed
spectral branch) with seven classical methods and three state-
of-art DL-based techniques to show the effectiveness of the
SST. Six metrics, i.e., the erreur relative globale adimen-
sionnelle de synthése (ERGAS) [76], the SAM [31], the
Q2n index [77], the peak signal-to-noise ratio (PSNR), the
structure similarity index (SSIM), and the root-mean-square
error (RMSE), are used for measuring the similarity with
the GT. Ideal values are 0 for ERGAS, SAM, and RMSE;
1 for Q2n and SSIM; and infinity for PSNR. The adopted
benchmark is as follows.

1) Classical methods
a) Bicubic: Bicubic interpolation method applied to

LRHS images.
b) GSA: The GSA [29] method for HS and MS image

fusion [1].
c) Smoothing filter-based intensity modulation

(SFIM): SFIM for HS and MS image fusion [1],
[78].

d) GLPHS: GLP with MTF as in [1] and [32].
e) CNMF: CNMF for HS and MS image fusion [37].
f) HySure: HS image super-resolution via subspace

regularization [36].
g) FUSE: Fast fusion for multiband images by solving

a Sylvester equation [79].
2https://earthexplorer.usgs.gov/
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TABLE I
SIZE OF THE GT AND THE NUMBERS OF SAMPLES FOR THE DATASETS USED IN THIS ARTICLE. (·/· BANDS) REFERS TO THE NUMBER OF BANDS FOR

HS AND MS IMAGES, RESPECTIVELY

TABLE II
AVERAGE RESULTS ON THE CAVE TEST SET. THE BEST RESULTS ARE IN

BOLDFACE, AND THE SECOND BEST RESULTS ARE UNDERLINED

2) DL-based methods

a) MHFnet: An interpretable MS and HS image
fusion network [48].

b) HSRnet: A spatial–spectral attention network for
HS and MS image fusion [54].

c) MoGDCN: A model-guided network for HS and
MS image fusion [55].

The results of classical methods are obtained by the toolbox
as proposed in [1]. The results for DL-based methods are
obtained by the official codes (available online) for the CAVE
dataset, and by changing inputs and outputs for Chikusei and
Hyperion/ALI datasets, since their number of HS bands is
different from that of the CAVE dataset.

2) Results on CAVE: To demonstrate the effectiveness of
the proposed SST on natural images, we quantitatively and
qualitatively evaluate all the methods on the CAVE dataset.

The quantitative results are shown in Table II, from which
we can observe that HSRnet and our SST achieve better
results. Overall, the DL-based methods have much better
performance than classical methods. Noteworthy, although
our method does not achieve the best result on the SAM,
PSNR, and RMSE metric, this represents just a partial index
measuring only the spectral preservation and average errors.
Moreover, PSNR is derived from RMSE. Instead, the two
overall quality indexes, i.e., ERGAS and Q2n, testify the
goodness of our approach showing the best performance in
both cases. The best SSIM result also shows that our SST has
a better structure reconstruction.

It is worth to be noted that the reason why our SST does not
achieve better results in a clear way with respect to the other
DL-based methods in this test case is that CAVE data do not
have so many similarity structures with a reduced number of
spectral bands. Hence, the spatial and spectral transformers in

Fig. 3. Visual comparison for “chart_and_stuffed_toy_ms” in the CAVE
dataset. The color images are composed by taking (29, 19, 9) bands as RGB
bands. “Res.” means the residual between the corresponding result and the
GT averaged along spectral bands. Ours stands for the proposed SST.

Fig. 4. Visual comparison for “superballs_ms” in the CAVE dataset. The
color images are composed by taking (29, 19, 9) bands as RGB bands. “Res.”
means the residual between the corresponding result and the GT averaged
along spectral bands. Ours stands for the proposed SST.

our SST cannot leverage the spatial and spectral dependencies
in a sufficient way to create a better gap with respect to the
other DL-based methods. Instead, remote sensing images, such
as Chikusei and Hyperion/ALI, have these kinds of features.
Thus, the advantages on remotely sensed images will be much
more clear (see Section IV-C3).

To show the perceptual quality, we present a visual com-
parison among all the methods in Figs. 3 and 4. For Fig. 3,
the bottom two rows show the residual image between the
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TABLE III
AVERAGE RESULTS ON THE CHIKUSEI TEST SET. THE BEST RESULTS ARE

IN BOLDFACE, AND THE SECOND-BEST RESULTS ARE UNDERLINED

corresponding result and the ground truth (GT). This is
obtained by averaging over the spectral bands the band-by-
band residuals. From these images, we can easily find that
DL methods show fewer distortions than classical methods.
Among DL-based methods, MHFnet achieves worse results
than the others. It is hard to assess which one is the best
among HSRnet, MoGDCN, and our SST, since the visual
results are very close. In Fig. 4, we can find similar results
to those of Fig. 3, but HSRnet achieves fewer errors than
the other methods, while our method gets the second-fewest
errors. Overall, the visual effectiveness is consistent with the
quantitative results, where DL methods achieve better results
than classical methods, showing quite similar outcomes for
HSRnet, MoGDCN, and the proposed approach.

3) Results on Chikusei: To demonstrate the effectiveness of
the proposed method on remote sensing images, we exploited
the widely used Chikusei dataset.

The quantitative results are reported in Table III. We can
easily find out that our approaches (i.e., SST and SPE) achieve
the best results. For this dataset, DL-based methods achieve
much better results than classical images. This is because the
test and the training areas are quite close to each other, i.e.,
located in the Chikusei, Japan. Therefore, DL methods can
fully exploit the learned features to reconstruct HRMS images.
MHFnet achieves the second best result after our approaches.
It is not surprising that a model, consisting of a huge amount of
parameters (see Section IV-C5), achieves good results on very
close images. Despite that, the gap among MHFnet, HSRnet,
and MoGDCN is quite small. On the other hand, our SST
gets much better performance than the comparative methods
because of the superiority of capturing spatial and spectral
dependencies using the spatial and spectral transformers.

The visual comparison is shown in Fig. 5. Obviously,
DL methods achieve better results than classical methods.
Classical methods show many distortions on smooth areas
(e.g., roofs). About DL methods, MoGDCN gets more distor-
tions compared with MHFnet, HSRnet, and our SST. Although
MHFnet and HSRnet get great fidelity in reproducing many
areas, they show some distortions near some edges. Our SST
obtains the closest result with respect to the GT.

4) Results on Hyperion/ALI: To demonstrate the effective-
ness of the proposed method on real HS/MS image pairs and

TABLE IV
AVERAGE RESULTS ON THE HYPERION/ALI TEST SET. BEST RESULTS

ARE IN BOLDFACE, AND THE SECOND BEST RESULTS
ARE UNDERLINED

Fig. 5. Visual comparison considering a close-up of a Chikusei test image.
The color images are composed by taking (29, 19, 9) bands as RGB bands.
“Res.” means the residual between the corresponding result and the GT
averaged along spectral bands. Ours stands for the proposed SST.

the generalization of the results to different areas, we exploit
the Hyperion/ALI dataset.

The quantitative results are reported in Table IV. Our SST
achieves the best results followed by HSRnet. Although the
DL-based methods still outperform the classical ones, the gap
between them is reduced in this case pointing out that the
potentiality of DL models is not sufficiently explored for real
cases, yet. On the other hand, the gap in performance between
our SST and the other DL methods increases, demonstrating
the effectiveness of our approach in real test cases. This dataset
is the most important one in this article, because it includes
some different types of area (e.g., buildings and arable lands),
showing a big variability between test and training sets, thus
simulating an operating environment.

A visual comparison is provided in Fig. 6. Consistently
with the quantitative results, some classical methods, such as
SFIMHS, GLPHS, and CNMF, obtain slightly worse or even
comparable results with respect to MHFnet. Instead, outcomes
obtained by HSRnet and MoGDCN have lower distortions than
those of MHFnet. Finally, there is an evident visual gap (see
the residual images) between all the compared approaches and
our SST.
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TABLE V
NUMBER OF PARAMETERS AND THE RUNNING TIMES FOR ALL THE METHODS. “/” MEANS THAT THERE ARE NO LEARNABLE PARAMETERS. “C”

REFERS TO A METHOD RUNNING ON CPU, AND “G” REFERS TO A METHOD RUNNING ON GPU. M INDICATES A MILLION. IT IS WORTH TO BE
REMARKED THAT MHFNET AND HSRNET USE TENSORFLOW; INSTEAD, MOGDCN AND OUR METHODS EXPLOIT PYTORCH

Fig. 6. Visual comparison using a close-up of the Paris test case of the
Hyperion/ALI dataset. The color images are composed by taking (29, 19, 9)
bands as RGB bands. “Res.” means the residual between the corresponding
result and the GT averaged along spectral bands. Ours stands for the
proposed SST.

TABLE VI
RESULTS OF SIX DIFFERENT NETWORKS EVALUATED ON THE CAVE

VALIDATION SET. THE BEST RESULTS ARE IN BOLDFACE

5) Model Efficiency: To show the efficiency of the proposed
SST, we compare the number of parameters (#Params.) and the
running times for all the compared approaches. The parameters
and running times are evaluated using the Chikusei dataset
with a desktop equipped an Intel I7-12700K CPU and an
NVIDIA RTX-3090 GPU. The size of the HRHS image is
96 × 96 × 120 for this test. As reported in Table V, although
our SST is not the most lightweight model for DL-based
methods, the running time is the shortest one because of the
linear computational complexity attention used in the trans-
former block. Moreover, if a lightweight network is required,
one can adopt SPE built only by the spectral branch. SPE
has much fewer parameters and a reduced running time than
the other compared DL-based methods while achieving SOTA
performance.

D. Ablation Study

1) Investigation on Architecture: To validate the effective-
ness of each module in the proposed network, we conduct an

Fig. 7. Visualization of spectral and spatial dependence for a sample in the
Hyperion/ALI validation set. The first row shows the test samples and the
pixel, marked with a green star in the right image, for the visualization of
the spatial dependence. The second and third rows show the spectral attention
map (120 × 120) obtained by eight heads in the 13th SpeT for our SST. The
last two rows show the spatial dependence of the marked pixel obtained by
eight heads in the 13th SpaT for our SST.

ablation study to compare five variants of the SST reported
in Table VI with a baseline network (called SWINHS) built
by using SWIN transformer blocks. To save training time,
we reduced L to 4 and the number of iterations to 2 × 104 for
all the networks in Table VI. Noteworthy, the Q2n index is
less sensitive to changes in the network architecture and also
in varying hyperparameters (see Section IV-D3). Therefore,
we will mainly consider ERGAS and SAM metrics in this
ablation study. The meaning of each compared network is as
follows.

1) SWINHS: The network by simply replacing the trans-
former blocks in SPA (see the following) by the ones
from SWIN [3].

2) SPA: The network using only the spatial branch.
3) SPE: The network using only the spectral branch.
4) Dual-T: The network with both spectral and spatial

branches but only one fusion module at the end of the
two branches.
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Fig. 8. Visualization of input spatial features (the first row) versus spatial attended features (the second row) and input spectral features (the third row)
versus SpeMA output features (the last row).

Fig. 9. (a) ERGAS, (b) SAM, (c) Q2n, and (d) #Params (unit of million, M) versus different hyperparameters for our SST. The performance is evaluated on the
CAVE validation set. For each group of hyperparameters, the value increases from left to right; specifically, we have P = {1, 4, 8, 16, 18}, K = {3, 5, 7, 9, 11},
M = {1, 2, 4, 6, 8, 120}, D = {30, 60, 90, 120, 150, 180}, and L = {2, 4, 6, 8, 10}. To save the training time, we reduced the number of iterations to
2 × 104 for the networks in this figure.

5) Dual-T-F: The network with dual branches and a fusion
module after each pair of SST blocks.

6) SST: The proposed approach adding the dense recon-
struction to the Dual-T-F to make full use of all the
fused features.

a) Difference between our SST and SWIN blocks: The
proposed transformer blocks differ from those of SWIN for
three main aspects: 1) SWIN transformer blocks only consider
spatial attention, while our SST not only considers spatial
attention in SpaTs but also considers the spectral attention,
which can enhance the spectral features for HS and MS image
fusion; 2) the FFN in SWIN transformer blocks consists of full
connections, while the one in our transformer is constructed
by convolution layers, which can receive context pixels that
cannot be achieved by full connections; and 3) the softmax
is used to normalize the attention map in SWIN transformer
blocks, while the inner production is used to normalize atten-
tion in our transformer blocks. Recalling the switcher formula
(13), our attention module can adaptively select a calculation
order for reducing the computation. Benefiting from that, our
transformer blocks globally acquire the attention map and do
not have to divide features into widows to save computational
resources.

b) Effectiveness of SPA: Comparing SPA with SWINHS,
we can easily find that SPA achieves better results, despite the
use of a few more parameters. This shows that the SpaTs
in SPA (considering the global attention and the context
reception) overcome the local window attention and the point
reception of full connections for HS and MS image fusion.

c) Effectiveness of SPE: Although SPE achieves the
worst results among the different configurations, it has much
fewer parameters than the other methods and also has much
fewer computations than the others because of the pooling in
(13). This is indeed a good choice to achieve a lightweight
transformer model with satisfactory results, as shown in
Section IV-C.

d) Effectiveness of dual-branch fusion: Comparing
Dual-T with SPA and SPE, we can see that Dual-T achieves
worse results than SPA. Although both the spatial and spectral
enhanced features are explored in Dual-T, the fusion, just at
the end of the two branches, is not enough. Besides, there is no
information interaction between spectral and spatial enhanced
features. Therefore, we added a fusion module following
each pair of SST blocks in the middle of the two branches,
achieving the Dual-T-F. This latter obtains better results than
both SPA and SPE showing the effectiveness of dual-branch
fusion for SST.

e) Effectiveness of dense reconstruction: Although spa-
tial and spectral features are fused by the middle fusion
module, the fused features used to reconstruct the final HRMS
images are still only from the final fusion module. To exploit
the fused features in a better way, we use dense links from
all the previous fusion modules to the final one achieving
the proposed SST. It can easily be seen that, because of
the use of dense reconstruction, the performance is further
improved.

2) Analysis on Multihead Attention: To get some insights
on the multihead attention, we show the spectral attention and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on September 07,2023 at 10:20:14 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

spatial attention maps for a sampling pixel for the spectral and
spatial multihead attention; see Fig. 7. Observing the spectral
attention maps for eight heads, we can see that each head
focuses on some specific spectral bases (as already mentioned),
since there are some vertical lines in these attention maps,
which is unexpected, because the attention map should be
symmetrical and have high values on its diagonal. We think it
is because the multihead attention forces each head to explore
different spectral bases in different heads. This is also the
reason why a fused layer and an FFN are important for a trans-
former; thus, the features enhanced by the different spectral
bases can be fused. Having a look at the spatial attention maps,
we can also find that the different heads explore different
dependencies for the same pixel, which is also consistent
with the statement in [4], demonstrating that different attention
heads explore features in different subspaces.

Besides, we show the average features before and after the
processing of the multihead attention as Fig. 8. Comparing
the first and second rows for SpaT, we can note that the
attended features by SpaMA have clearer edges, such as the
results in Blocks 2, 7, and 13, which indicate that SpaMA
enhances the spatial features. For SpeMA, we can remark that
its output contains low frequency of the input, such as results
in Blocks 1, 7, 8, and 11, which can show that our SpeT
has the potentiality to capture, explore, and exploit spectral
features.

3) Investigation on Key Hyperparameters: There are five
key hyperparameters for our SST including the pooling size
to get the query and the key in SpeT, P , in (12); the number of
heads for multihead attention, M , in (12) and (16); the number
of channels for spatial features, D, in (16); and the number
of transformer blocks in each branch, L , in (3) and (4). The
influence of the kernel size used to fuse the spectral features
in SpeT, K , is also considered. We conducted five groups
of experiments to study the effects of each hyperparameter.
The results are shown in Fig. 9. We can observe that the
Q2n is insensitive to the different hyperparameters. Therefore,
we mainly analyze the results based on ERGAS, SAM, and
learnable parameter variations.

a) Performance versus P: We studied the effect of vary-
ing P in {1, 4, 8, 16, 18} fixing the rest of the parameters as
K = 9, L = 10, M = 8, and D = 120. Observing the bars
of P for ERGAS and SAM, see Fig. 9(a) and (b), we can
find that although a slight performance gain is achieved with
the increase in the output size of the pooling, the learnable
parameters are sharply increased. This is due to the fact that
the parameters for the full connections used to generate the
query and the key are quadratic with respect to the pooling
size. Besides, we can find that P = 4 achieves a good
performance, because 4 × 4 pixels are enough to represent
the query and the key for spectral features, as discussed in
Section III-B.

b) Performance versus K: We studied the effect of vary-
ing K in {1, 3, 5, 7, 9, 11} fixing the rest of the parameters as
P = 4, L = 10, M = 8, and D = 120. Having a look at the
ERGAS and SAM results, we can find that K = 9 is the best
setting.

c) Performance versus M: Intuitively, more heads enable
more attention maps for different groups of features, which
can enrich the features. As demonstrated by Vaswani et al. [4],
multiple heads can explore the features in different subspaces.
Thus, it is interesting to study how the number of heads
impacts the performance for fusing HS and MS images.
Therefore, we studied different numbers of heads in the
multihead attention. Moreover, we added two special cases,
i.e., only a head, M = 1, and each channel has a head,
M = D. According to the results shown in Fig. 9, we can
find that the performance increases for the SAM index from
M = 2 to M = 8, while the performance for the ERGAS is
up and down. For the two special cases, M = 1 only achieves
slightly better results than M = 2; instead, the performance
for M = 120 dramatically decreases. In our opinion, this is
because the spatial attention map for each head is obtained
by the similarity of a single pixel rather than a set of pixels
when M = D. Therefore, the attention map for each head only
considers the intensity similarity and cannot acquire similarity
in other ways as done when a set of pixels is used. Overall, our
experiments show that the performance can be improved in an
appropriate range for the SAM metric and the performance
visibly decreases when each channel is a head.

d) Performance versus D: We increased D from 30 to
180 with a step of 30. As shown in Fig. 9, the performance
increases up to D = 120, and then decreases. Thus, D =

120 is set for the proposed approach.
e) Performance versus L: We increased L from 2 to

10 with a step of 2. It is obvious that the performance is
improved by increasing L . Despite that, we do not choose a
very big value for L , because we found that our SST cannot
obtain a clear performance improvement when L > 14, and
the training becomes unstable when L is too large. Therefore,
L = 14 is set for the proposed approach.

V. CONCLUSION

In this article, we proposed an SST for HS and MS image
fusion. We showed the SST blocks to extract spectral and
spatial features. Experimental results demonstrated that our
method achieves better results than all comparative methods in
all the test cases highlighting the potentiality of the use of the
transformer for HS and MS image fusion. The effectiveness of
each module in our SST has been studied in the ablation study.
Besides, a specific analysis about multihead attention for HS
and MS image fusion has been presented together with some
considerations from a computational point of view. Although
the proposed SST is a lightweight transformer architecture, its
computational burden is still higher than lightweight CNNs.
Besides, as in almost all the DL solutions, the proposed
SST shows a reduced generalization ability. Hence, future
developments will be related to the study of more lightweight
and generalized transformers for HS and MS image fusion.
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