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Abstract— Deep learning (DL) methods have achieved impres-
sive performance for pansharpening in recent years. However,
because of poor generalization, most DL. methods achieve unsatis-
factory performance for data acquired by sensors not considered
during the training phase and decreased performance for samples
at full resolution (FR). To solve this issue, we propose a data
augmentation framework for pansharpening neural networks
(PNNs). Specifically, we introduce first a random spatial degrada-
tion based on anisotropic Gaussian-shaped modulation transfer
functions (MTFs) to increase the generalization with respect
to different spatial models and sensors. Then, considering that
various sensors have different ground sampling distances (GSDs),
we randomly rescale the GSD of the training samples to improve
the generalization with respect to spatial resolution. Thanks to
this module, the generalization to tests from different sensors
and samples at FR can easily be achieved. Experimental results
demonstrate the effectiveness of the proposed approach with
better performance when data for training are decoupled with
the ones for testing and comparable performance when training
and testing are coupled (i.e., data acquired by the same sensor
are considered in the two phases). Besides, performance at FR
for PNNs is improved by the proposed approach. The proposed
approach has been integrated into existing PNNs showing satis-
factory performance for widely used sensors, including, GaoFen-1
(GF1), QuickBird (QB), WorldView-2 (WV2), WorldView-3
(WV3), IKONOS (IK), Spot-7, GeoEye, and PHR1A.

Index Terms— Convolutional neural networks (CNNSs), data
augmentation, data fusion, deep learning (DL), multispectral
imaging, pansharpening, remote sensing.
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I. INTRODUCTION
ANSHARPENING aims at fusing the high-frequency
details from a high-resolution panchromatic (PAN) image
into a low-resolution multispectral (LRMS) image with finer
spectral information, thereby obtaining a high-resolution mul-
tispectral (HRMS) image.

Recently, deep learning (DL) achieved good performance
for pansharpening. However, the generalization is still an open
problem for pansharpening neural networks (PNNs), which
limits the applicability of PNNs in real contexts. Specifically,
the poor generalization leads to the following issues. Almost
all DL methods have to train separate models for different
sensors, which is time- and resource-consuming. This is a
straightforward drawback compared with traditional methods
that can process data from any sensor by a single model.
Besides, we may lack training samples from a specific sensor,
in which case a DL model trained by data from other sensors
with advanced generalization can be applied to the specific
sensor. Moreover, the generalization of DL methods for full
resolution (FR) samples is still a challenge since most of DL
methods are trained at reduced resolution (RR), thus showing
a performance drop at FR. Therefore, it is crucial the study of
the generalization of PNNs.

There are two problems when fusing MS and PAN images
acquired by various sensors using a single DL model. The first
one is the band number of MS images. MS images from differ-
ent sensors may have different numbers of bands, such as four
bands for QuickBird (QB), eight bands for WorldView-2/-3
(WV2/WV3), six bands with 20-m ground sampling dis-
tance (GSD) for Sentinel-2 MS images [1], three bands with
60-m GSD for Sentinel-2 MS images, and nine bands with
30-m GSD for ALI. For most DL methods, the limitation of
processing MS images with a constant number of bands pre-
cludes the sharpening of MS images with a different number of
bands. Although a model, named ArbRPN, has been proposed
in [2] to process MS images with arbitrary numbers of bands,
the network still cannot obtain a satisfactory performance for
samples acquired by sensors not presented in the training set,
thus showing a limited generalization. Unfortunately, there is
almost no literature to study the generalization for PNNs.
Although Scarpa et al. [3] proposed a target-adaptive fine-
tuning to process samples out of the training set, fine-tuning
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cannot improve the generalization of a model, but it trains
an image-specific model. Differently, we aim at improving
the generalization of PNNs by means of data augmentation,
and then combining the augmentation strategy with existing
networks.

To improve the performance at FR, some methods [4], [5],
[6], [71, [8], [9] removed the resolution gap by directly training
models at FR, whereas it is nontrivial to train a model at FR
in a stable way. Different from these methods, we improve the
performance at FR by increasing the generalization of PNNs
at FR. We train the PNNs at RR by data augmentation based
on random GSD, which is stable and performs well at FR.

It has been shown in many high-level visual tasks that data
augmentation, such as Cutout [10], CutMix [11], MixUp [12],
can improve the generalization of DL models. However,
data augmentation for high-level visual tasks cannot directly
be adopted to low-level ones [13]. Data augmentation for
generalization seems to be neglected in the pansharpening
community [13].

To fill this gap, a data augmentation framework is proposed
in this article to improve the generalization for PNNs. We aug-
ment data in two ways. First, we consider that various sensors
have different modulation transfer functions (MTFs). We uti-
lize random MTFs to degrade MS images and generate the RR
samples. This augmentation can increase the diversity of train-
ing samples, thus covering more spatial models for sensors.
The Gaussian function is adopted to simulate random MTFs in
our augmentation framework since it has a shape that is close
to the real MTFs of sensors [14]. Besides, Aiazzi et al. [14]
showed that a typical MTF for MS bands is anisotropic, thus
driving us toward the simulation of anisotropic Gaussian-
shaped MTFs. Second, we augment training samples by ran-
domly rescaling the GSD of MS and PAN images, which
can increase the GSD diversity of training samples. Various
sensors usually have distinct GSDs. Even the same sensor has
distinct GSDs for different bands, such as the aforementioned
Sentinel-2. Moreover, the invariance among scales property for
training DL approaches is not always valid. Thus, the model
trained at RR could have lower performance at FR. Therefore,
we think the GSD is also an important factor. Through
augmenting the GSD diversity of training samples, a network
can get improved performance even when fusing samples at
different resolutions with respect to the observed ones during
the training phase, as shown in Fig. 1 and in Section I'V-B.

In summary, the contributions of this article are as follows.

1) We study the generalization of PNNs from the data
augmentation point of view. A simple yet effective data
augmentation framework is proposed to improve the
generalization of existing PNNs.

The generation of anisotropic Gaussian-shaped MTFs
and the rescaling of GSDs are proposed to improve the
generalization of PNNs with respect to spatial model
and resolution, respectively, thus also improving perfor-
mance at FR.

The proposed approach has been integrated into existing
PNNs and works well for widely used sensors using a
single model. To the best of our knowledge, the combi-
nation with existing neural networks, such as, ArbRPN,

2)

3)
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Fig. 1. Comparison between the model trained with and without random
GSD rescaling. (Top row) RGB visualization. (Bottom row) Absolute error
between the fused image and the GT. The LRMS image in the test phase
has a GSD of 12.8 m, while samples for training have GSDs of 32, 9.76,
and 7.36 m.

represents the first DL-based solution to address the
fusion task for many different sensors without any sub-
sequent fine-tuning, architecture changing, or parameter
tuning.

The rest of this article is organized as follows. Section II
reviews some DL methods for pansharpening. The proposed
augmentation framework is presented in Section III. Experi-
mental results are conducted in Section IV. Finally, Section V
draws the conclusion of this article.

II. RELATED WORKS

Masi et al. [15], inspired by the convolutional neural net-
work (CNN) for image super-resolution [16], proposed the
first CNN for pansharpening, named PNN. Its superior perfor-
mance encouraged many DL methods. A target-adaptive PNN
to adapt the model to the target image during the testing phase
has been proposed in [3]. Wei et al. [17] introduced deep resid-
ual learning to learn residuals for input images, then generating
fused results by a mapping of spectral dimensional reduction.
A multiscale deep CNN has been proposed in [18] to exploit
multiscale information for pansharpening. PanNet [19] fused
the MS and PAN images in the high-pass filtering domain
to pursue spectral preservation and spatial enhancement of
LRMS images. Liu et al. [20] proposed a two-stream fusion
network, in which features of MS and PAN images have been
separately extracted and then fused into the feature domain.
To better enhance details, Lai et al. [21] devised two branches
for pansharpening, one of which using the gradient information
to guide the fusion of MS and PAN images in the other branch.
Assuming that MS bands are independent of one another,
Liu et al. [22] proposed a band-independent encoder—decoder
network (BIEDN) to process MS images with any num-
ber of bands. However, this assumption hardly holds. Thus,
Chen et al. [2] proposed a bidirectional recurrent pansharpen-
ing network, named ArbRPN, for MS images with arbitrary
numbers of bands. Formulating pansharpening as colorization
of PAN images, Ozcelik et al. [23] proposed a generative
adversarial network (GAN) to learn the relationship between
the LRMS image and an intensity image synthesized by the
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Fig. 2. Proposed data augmentation framework for pansharpening.

LRMS image, then applying it to PAN images to achieve the
HRMS images. Finally, Lei et al. [24] proposed a nonlocal
attention residual network to leverage on the self-similarity in
images for pansharpening.

Recently, some unsupervised neural networks have also
been presented. Unlike the above-mentioned supervised
methods, these approaches directly train a model at FR,
thus relaxing the assumption of invariance among scales.
Luo et al. [4] proposed an unsupervised loss function based
on the relationship between the HRMS image and the LR
observations, i.e., PAN and LRMS data. Besides, an adjust-
ment component based on the quality with no reference (QNR)
index [25] has been introduced in the loss function for spectral
and spatial preservation. Qu et al. [5] utilized an encoder built
by stacked attention modules to extract attention representation
for MS images, then injecting space-varying details by space-
varying injection coefficients into the attention representation.
Finally, an image is reconstructed by the decoder with the
detail-injected attention representation. Ma et al. [6] intro-
duced an unsupervised GAN for pansharpening. Two dis-
criminators have been adopted into the network to enforce
spectral and spatial preservation, respectively. Following the
same research line, pansharpening generative multi-adversarial
network (PGMAN) has been proposed by Zhou et al. [7]
consisting of an unsupervised loss based on the QNR. In [8],
a cycle-consistent loss has been introduced for pansharpening.
Finally, Ciotola et al. [9] proposed a training framework at FR
to avoid information loss in training data and to guarantee the
performance at FR. Unlike the above methods, which adopt
unsupervised training at FR, our approach can improve the
generalization of neural networks at FR by supervised learning
considering lower resolutions, thus generalizing with respect to
the resolution and obtaining a training that is more stable than
that of provided by unsupervised learning using loss functions
including (usually inaccurate) evaluations at FR. Besides,
PNNs trained by our data augmentation approach have a
superior generalization to samples from different sensors.

III. METHODOLOGY

In this section, we will overview first the proposed frame-
work. Then, the implementations of random anisotropic
Gaussian-shaped MTFs and random GSD rescaling are
introduced.

A. Data Augmentation Framework: An Overview

Fig. 2 shows the proposed augmentation framework, which
consists of four steps: 1) random GSD rescaling; 2) random
cropping; 3) random flipping and rotation; and 4) generation
of RR samples.

First, we randomly rescale the GSD of the FR images
to improve the generalization of networks in fusing images
with different resolutions. A variable subject to an uniform
distribution with interval of [0, 1) is used to decide if MS
and PAN images should be rescaled or not. When the random
variable is smaller than a threshold, ¢ (empirically set to 0.2 in
this article), MS and PAN images are rescaled by

Lys: =4r (fvrer (Tus,i)) (1)
P =], (fideal,r(P)) 2)

where fyvrr.-(+), and figea - (-) denote the MTF-based and ideal
filtering with a normalized cut-off frequency dependent on r,
respectively, |, (-) is the decimation operation with decimated
rate of (1/r), Ims,;, and Ifws’i are the ith band of the original
MS and GSD-rescaled MS images, respectively, P and P’
are the original and GSD-rescaled PAN images, respectively,
r ~ U(0.5,1) is the random scale ratio used to change the
GSD of MS and PAN images, and U (a, b) refers to a uniform
distribution with interval [a, b).

Then, similar to general augmentation methods as in [2] and
[21], a patch of predefined size, p x p, is randomly cropped
from the rescaled MS and PAN images. The left-upper corner
of the crop position is controlled by two random variables
U(l,H — p) and U(1, W — p), respectively, where H and W
are the height and width of the corresponding image.
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Afterward, the cropped patches are flipped vertically or
horizontally, if two random variables sampled according to
U (0, 1) are greater than a threshold. The rotation of 90° is
also imposed to the MS and PAN patches if another random
variable sampled according to U (0, 1) is greater than the same
threshold.

Finally, the RR MS images are generated by random
anisotropic Gaussian-shaped MTFs, while the RR PAN sam-
ples are achieved by ideal filtering like in [14], [26],
and [27]. After this last step, we have the RR versions of the
GSD-rescaled MS and PAN images. These images are taken as
input for the training step, while the GSD-rescaled MS image
before MTF-based degradation is taken as ground-truth (GT)
for supervised learning.

Since misalignment can occur in the stage of GSD rescaling
and generation of RR samples (see Section III-C), we moved
the ideal downsampling for the generation of RR versions
of GSD-rescaled PAN images to the GSD-rescaling stage
combining them together, as shown by the red skip arrow
in Fig. 2. Thus, the GSD-rescaling operation in (2) becomes
a combined operation of GSD-rescaling and generation of
RR samples, i.e.,

P=|: (figeaz(P))) 3)

where s is the scale ratio between MS and PAN and P denotes
the RR version of the GSD-rescaled PAN image.

B. Degradation With Random Anisotropic MTFs

MTF-based degradation has been used by widespread DL
methods to generate RR samples for training. Generally,
isotropic Gaussian-shaped MTF is used to degrade the original
samples for two reasons: 1) its shape is close to the true
MTF of an MS band and 2) given the scale ratio, it is
easy to determine isotropic Gaussian-shaped MTFs by a sole
parameter, i.e., the standard deviation, which can be derived
from the gain at Nyquist frequency. However, Aiazzi et al. [14]
demonstrated that the true MTF is usually anisotropic. Hence,
the augmentation by random anisotropic MTFs can simulate a
more practical degradation and further improve the diversity of
training samples. Thus, we use anisotropic Gaussian functions
to simulate the MTFs, although the augmentation by random
isotropic Gaussian-shaped MTFs already obtain a satisfactory
generalization (see Section IV-B). Specifically, an anisotropic
Gaussian-shaped MTF can be determined by two standard
deviations and a rotation degree. Therefore, we can use three
independent random variables, o, 07, and 6, to generate a
random anisotropic Gaussian-shaped MTF. 6 sampling from
U, ) is used to determine the rotation degree of the
anisotropic Gaussian kernel. o7 and o, are two standard
deviations for the anisotropic Gaussian kernel.

For isotropic Gaussian-shaped MTFs, we can formulate the
gain at Nyquist frequency considering a Gaussian function as

following:
(<1v—1>ﬂm)2
2

202

G =exp| — 4)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

where G is the gain at Nyquist frequency, f.,: = (1/s) is the
normalized Nyquist frequency, N and o are the support and
the standard deviation of the Gaussian function, respectively.
Therefore, given the scale ratio s and the support N, as long
as we have the gain G of an imaging system, the standard
deviations can be derived from the gain when its MTF is
approximated by a Gaussian function. Thus, the standard devi-
ations can be formulated as a function of the gain. Specifically,
the relationship between the standard deviation and the gain
at Nyquist frequency is as follows:

(M)z
2

—2In(G) )

Like [26], and [28], N is set to 41. In indicates the nat-
ural logarithm. In this article, we focus on pansharpening
with a scale ratio s equal to 4. Therefore, for anisotropic
Gaussian-shaped MTFs, we can achieve two random standard
deviations, i.e., o1 and o0, by sampling two Gs from two
independent uniform distributions, U[0.2,0.4). The reason
of choosing this interval for G is that the gains at Nyquist
frequency for well-known MS sensors are located in this
interval. Given the standard deviations and the rotation degree,
the Gaussian-shaped anisotropic MTF can be obtained by

Kwmrr(x, y) = exp <—;VEVT> (6)
where v = [x, y], -7 is the transpose operator, and ¥ is a
covariance matrix defined as

1
_ [cos(@) —sin(@)] o? {cos(@) sin(Q)]
~ |sin(@)  cos(6) 0 1 | [=sin@®) cos®)|
o3
@)

Finally, a finite impulse response (FIR) filter is designed
through the Kaiser window approach according to the ran-
domly generated MTF. Applying it to an MS band and then
decimating the outcome with a factor s, we obtain the RR MS
band by the degradation of a random anisotropic Gaussian-
shaped MTF.

C. Random Rescaling of GSD

The simulation of images captured at different resolutions
is done according to Wald’s protocol in the same way as the
classical generation of products for the assessment at RR.
In particular, an ideal filter is used for PAN images and
MTF-based degradation is considered for MS images. The
MTF-based degradation for MS data in this stage is similar
to what we detailed in Section III-B. However, differently
from Section III-B, isotropic Gaussian-shaped MTFs are used
fixing the gains on a sensor basis as suggested in [27]. Only
the scale ratio is sampled according to the uniform random
variable U (0.5, 1).

As mentioned in Section III-A, there may exist spatial
misalignments between RR MS and PAN images, if we rescale
first the GSD and then generating the RR samples. Specifically,
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TABLE I

DETAILS OF THE DATASETS USED IN THE EXPERIMENTS. THE SI1ZE IS REFERRED TO MS IMAGES AT FR.
#BANDS IS THE NUMBER OF BANDS FOR MS IMAGES

Datasets For training, validation, test sets Only for test sets
GFI QB WV2 IK WV3 Spot-7 GE PHRTA
#Samples 410 500 500 40 32 2 2 3
512 x 592 1152 x 1856
Size 512 x 512 | 512 x 512 | 512 x 512 512 x 512 | 512 x 512 512 x 512 | 2224 x 1552
480 x 672
1840 x 1296
#Bands 4 4 8 4 8 4 4 4
GSD (m) 8 2.44 1.84 3.2 1.84 6 1.84 2

given an MS image with height, A, and width, w, the size of
the GSD-rescaled MS image is [hr], [wr], where r is the
random scale ratio sampled from U (0.5, 1). [-] denotes the
ceil operation.! Similarly, given a PAN image with height, H,
and width, W, the size of the GSD-rescaled PAN image
is [Hr], [Wr]l. H = sh and W sw, where s is the
scale ratio between MS and PAN images. If one requires that
GSD-rescaled MS and PAN images are still coregistered, their
size should satisfy the conditions

[Hr] = s[hr],
[Wr] =s[wr].

®)
€))

Moreover, the following conditions should be also valid to
ensure that the RR versions of GSD-rescaled MS and PAN
images are coregistered:

Plirw :SPher
2] 2]

However, these conditions are not always valid because r is
a random ratio sampled according to an uniform distribution
[i.e., U(0.5,1)]. For example, when H W =64, h =
w = 16, and s = 4, if r is 0.64, then the sizes of the
GSD-rescaled PAN and MS images are 41 x 41 and 11 x 11,
thus generating misalignments. The reason for setting the
interval to [0.5,1) is that we empirically found that this
interval achieves the best results among the ones in the set
{[0.5, 1), [0.25,1), [0.5,1.5), [1,2), [1,4)}.

To avoid the misalignment between the RR versions of
GSD-rescaled MS and PAN images, we integrate the ideal
downsampling for the generation of RR PAN images into the
GSD rescaling operation. That is, we generate the RR version
of the GSD-rescaled PAN image by ideal downsampling with
a scale ratio of (r/s), as shown in (3). Indeed, the image
rescaled by (r/s) is very close to the image obtained by
sequentially rescaling with factors » and (1/s) when bicubic
filtering? is applied to the image. This is due to the fact that
the above-mentioned filter is an almost ideal filter.

Through (3), we have an RR version of the GSD-rescaled
PAN image with size of ([(Hr/s)], [(Wr/s)]). Its size
is the same as that of the GSD-rescaled MS image, i.e.,
([hr], Twr]), since H = sh and W = sw. Then, to enforce

(10)

(1)

'Some other implementations can use round or floor operations.
2As proposed in previous works [14], [26], [27] for generating RR PAN
images.

coregistration among products to be fused, we only need to
make sure that ([hr]/s) and ([wr]/s) are integers. Random
cropping in Fig. 2 can work in this direction, thus cropping
patches with a size meeting the above conditions.

IV. EXPERIMENTAL ANALYSIS

In this section, we will introduce first the datasets and train-
ing details. Afterward, we will demonstrate the effectiveness of
the key components of the proposed data augmentation frame-
work and we will show the improvements of the framework for
many well-known PNNs. Finally, we will compare ArbRPN
trained by our data augmentation (ArbRPN+ for short) with
the state-of-the-art (SOTA) methods from both quantitative
and qualitative perspectives. Two test cases are considered:
1) known sensors, i.e., testing images acquired by a sensor
considered during the training and 2) unknown sensors, i.e.,
testing images acquired by a sensor not considered during the
training.

A. Datasets and Training Details

1) Datasets: We adopted five datasets from [29] and three
datasets from [27] involving the following sensors: QB, WV2,
GaoFen-1 (GF1), WV3, IKONOS (IK), PHR1A, Spot-7, and
GeoEye-1 (GE1). WV3, IK, PHR1A, Spot-7, and GEI are
only used for test sets to show the sensor-based generalization
ability, and the other three datasets are used for training,
validation, and test sets. MS images for WV2 and WV3 have
eight bands, while MS images for the other sensors have
four bands. The numbers of MS-PAN pairs for each dataset
are shown in Table I. We randomly split these samples into
training and test sets by a ratio of 8:2. Then, 20 images
from each training set are randomly selected as validation set.
To obtain RR samples for validation and test sets, we adopt
Wald’s protocol using the protocol described in [27]. The
original MS and PAN images are adopted for tests at FR. The
training samples are obtained by applying the proposed data
augmentation framework to images belonging to a (mixing)
dataset consisting of images acquired by three sensors: GFI,
QB, and WV2.

2) Training: The £, loss is used for training all the net-
works. The models are trained by 10° iterations, while the
models in Table II and Fig. 3 are trained by 2 x 10* for time
saving. The Adam [30] algorithm is used to optimize these
networks with Pytorch’s default settings, except for the initial
learning rate (set to 0.0002). The learning rate reduces to half
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TABLE II
AVERAGE RESULTS ON Known AND Unknown Sensors FOR MODELS TRAINED BY DIFFERENT AUGMENTATION STRATEGIES

Methods \ Average on known sensors H Average on unknown sensors

| SAM [ ERGAS | Q2n [ sCC [ Dy | Ds [HONR || SAM [ERGAS | Q2n [ sCC [ Dy [ Ds [ HQONR
Mix 1.7984 1.6816 | 0.8326 | 0.9692 | 0.0609 | 0.0800 | 0.8705 3.8324 3.9806 | 0.7834 | 0.8866 | 0.0790 | 0.0972 | 0.8362
Mix+Norm 1.7686 1.6501 0.8344 | 0.9711 | 0.0441 | 0.0673 | 0.8943 3.4511 4.0542 | 0.7938 | 0.8785 | 0.0450 | 0.0943 0.8657
Mix+Norm+RMTF 1.6885 1.5351 0.8462 | 0.9755 | 0.0301 | 0.0734 | 0.9009 3.3077 3.6087 | 0.8190 | 0.8904 | 0.0239 | 0.0996 | 0.8791
Mix+Norm+RMTF+AN 1.6787 1.5123 | 0.8536 | 0.9774 | 0.0282 | 0.0890 | 0.8876 3.2057 3.5614 | 0.8215 | 0.9187 | 0.0249 | 0.1049 0.8728
Mix+Norm+RMTF+AN+SC | 1.7302 1.5830 | 0.8434 | 0.9753 | 0.0199 | 0.0727 | 0.9099 3.1545 | 3.0895 | 0.8413 | 0.9337 | 0.0206 | 0.08980 | 0.8917
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Fig. 3.

every 2 x 10* iterations. The batch size is set to 8 and the
patch size for random cropping is set to 64 x 64.

B. Ablation Studies

In this section, we conduct some experiments based on
ArbRPN to validate the effectiveness of the proposed random
anisotropic Gaussian-shaped MTF degradation and the GSD
rescaling. Specifically, five models are listed in Table II. The
meaning of each model is as follows.

1) “Mix”: The model trained by the mixed (GF1, QB, and
WV?2) dataset.

“Mix + Norm”: The model trained by the mixed dataset
with data normalization.

“Mix + Norm + RMTF”: The model trained by mixed
dataset with data normalization and random isotropic
Gaussian-shaped MTF degradation.

“Mix + Norm + RMTF + An”: The model trained
by mixed dataset with data normalization and random
anisotropic Gaussian-shaped MTF degradation.

“Mix + Norm + RMTF + An + SC”: The model
trained by mixed dataset with data normalization, ran-
dom anisotropic Gaussian-shaped MTF degradation, and
GSD-rescaling.

1) Effectiveness of Data Normalization: Normalization is
a common way to improve the generalization for many tasks.
Therefore, we also validate its effectiveness for pansharpening.
We use image-level z-score normalization, since we find this
type of normalization is the best among all the normalization
approaches, including image-level max-min normalization,
band-level max-min normalization, and band-level z-score
normalization. As shown in Table II, “Mix + Norm” shows
advantages with respect to “Mix” for all the metrics on both
the known and unknown sensors test cases.

2)

3)

4)

5)

Threshold

0.5 0.6
Threshold

©

0.4 0.7 0.8 0.9 1

(b)

Average (a) SAM, (b) ERGAS, and (c) Q2n performance on known and unknown sensors versus threshold.

2) Effectiveness of Random Isotropic Gaussian-Shaped
MTF Degradation: Augmentation via random isotropic
Gaussian-shaped MTF degradation can increase the diversity
of samples applying different MTF degradations, thereby
improving the robustness of deep models to tackle with MS
images from different sensors. Comparing “Mix + Norm +
RMTF” and “Mix + Norm,” we can find that the former
achieves better results than the latter on all the metrics (except
for Dy). Therefore, the random isotropic Gaussian-shaped
MTF module is also effective to improve average performance
for known sensors and the generalization in the wunknown
sensors test case.

3) Effectiveness of Random Anisotropic Gaussian-Shaped
MTF Degradation: Real MTFs of MS sensors can have
an anisotropic shape [14]. Therefore, we apply random
anisotropic Gaussian-shaped MTF degradations to training
samples for better generalization. The approach is called
“Mix 4+ Norm + RMTF + AN” and it obtains the best
results on all the RR metrics and the second-best D, for
known sensors. For unknown sensors, it also achieves better
results than “Mix 4+ Norm 4+ RMTF” on all the RR metrics
and the D, index.

4) Effectiveness of GSD Rescaling: Sensors usually have
different GSDs. Therefore, the GSD rescaling is introduce to
augment data for training. To assess its effectiveness, we com-
pare the “Mix + Norm + RMTF + AN 4 SC” approach
(using GSD rescaling) and “Mix + Norm + RMTF + AN.”
As shown in Table II, the GSD rescaling obtains slightly worse
results than the chain without GSD rescaling at RR for known
sensors, but the clear advantages for the unknown sensors
test case support the choice of adding the GSD rescaling
module. Besides, the performance at RR is close to “Mix +
Norm + RMTF + AN,” but clearly better than this latter at
FR, which demonstrates the effectiveness of the GSD rescaling
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TABLE III

RESULTS OF MODELS TRAINED BY DIFFERENT DATA AUGMENTATION STRATEGIES. BEST RESULTS FOR EACH PANSHARPENING ARCHITECTURE
ARE IN BOLDFACE. FOR PNN AND PANNET, ONLY SENSOR WITH FOUR-BAND MS IMAGES ARE TESTED SINCE
THEY CANNOT DEAL WITH MS IMAGES WITH DIFFERENT NUMBERS OF BANDS

Average on known sensors, i.e., GF1, QB, and WV2 Average on unknown sensors, i.e., IK, WV3, SP7, PHR1A, and GE1.
Methods RR Results \ FR Results RR Results FR Results

SAM [ ERGAS | Q2n | sCC | Dy | Ds ] HQNR SAM [ ERGAS | Q2n [ sCC | D, | Ds [ HQNR

PNN (GF1) 1.8935 1.4683 0.7917 | 0.9329 | 0.1022 | 0.0851 | 0.8191 5.4058 5.6684 0.6287 | 0.8238 | 0.1948 | 0.1322 0.6912
PNN (Mix) 1.4040 1.1971 0.8460 | 0.9548 | 0.0466 | 0.0895 | 0.8694 6.7483 5.6820 0.6039 | 0.8266 | 0.2092 | 0.1492 0.6722
PNN (ours) 1.3337 1.1131 0.8659 | 0.9583 | 0.0279 | 0.0541 | 0.9208 5.3905 4.8346 0.6818 | 0.8612 | 0.1626 | 0.0997 0.7539
PanNet (GF1) 1.4341 1.3747 0.8366 | 0.9346 | 0.0242 | 0.0637 | 0.9137 3.2274 4.6802 0.7331 | 0.8301 | 0.0452 | 0.1216 0.8371
PanNet (Mix) 1.2891 1.1421 0.8607 | 0.9583 | 0.0315 | 0.0438 | 0.9262 3.1414 4.3958 0.7434 | 0.8469 | 0.0585 | 0.1075 0.8382
PanNet (ours) 1.2879 1.1433 0.8688 | 0.9569 | 0.0178 | 0.0378 | 0.9457 2.9061 3.7245 0.7977 | 0.8903 | 0.0362 | 0.0874 0.8792
BIEDN (GF1) 3.2372 3.2275 0.7410 | 0.9044 | 0.1040 | 0.0856 | 0.8246 4.2905 5.1758 0.7235 | 0.8458 | 0.0915 | 0.1176 0.7976
BIEDN (Mix) 1.8352 1.6958 0.8356 | 0.9697 | 0.0424 | 0.0738 | 0.8923 3.5515 3.7114 0.8210 | 0.9193 | 0.0451 | 0.0609 0.8968
BIEDN (ours) 1.8539 1.6852 0.8358 | 0.9664 | 0.0260 | 0.0633 | 0.9145 3.4138 3.7125 0.8289 | 0.9231 | 0.0333 | 0.0773 0.8938
ArbRPN (GF1) | 2.4909 3.0050 0.7344 | 09074 | 0.0533 | 0.0949 | 0.8567 4.1694 5.5836 0.6802 | 0.8109 | 0.0488 | 0.1159 0.8394
ArbRPN (Mix) | 1.5111 1.3321 0.8580 | 0.9840 | 0.0460 | 0.0865 | 0.8766 3.9444 4.4400 0.7206 | 0.8743 | 0.0874 | 0.1055 0.8187
ArbRPN (ours) | 1.4908 1.3011 0.8628 0.9852 | 0.0254 | 0.0986 | 0.8808 3.0423 3.1953 0.8265 | 0.9331 | 0.0362 | 0.1178 0.8493

module to improve the generalization with respect to spatial
resolution.

5) Impacts of Threshold for GSD Rescaling: In our exper-
iment using the GSD rescaling module, we found that the
performance trade-off between known and unknown sensors is
sensitive to the threshold exploited in this block (see Fig. 3).
We can note more stable performance for known sensors
varying the threshold than that of the unknown sensors test
case. When the threshold is set to 0.8, the Q2n for unknown
sensors achieves the best result, while the Q2n for known
sensors is close to the best one. However, having a look
at the results of SAM and ERGAS, we set the threshold
to 0.2 to guarantee better performance for the known sensors
test case while having satisfactory generalization as shown
in Sections IV-B and IV-C.

6) Applicability to Other Architectures: To validate effec-
tiveness of the proposed augmentation to other architectures,
we consider well-known neural networks for pansharpen-
ing, i.e., PNN, PanNet, BIEDN, in addition to ArbRPN,
trained by the GF1 dataset, the Mix (GF1, QB, and WV2)
dataset, and “ours” (using Mix and the proposed data aug-
mentation strategy). The results are shown in Table III.
Regarding the comparison between the models trained by
“GF1” and “Mix,” we can find that “Mix” does not always
improve the generalization of the model, e.g., PNN for
unknown sensors. On other hand, the model trained by “Mix”
with our augmentation strategy always obtains better results
than “GF1.”

C. Comparison With SOTA Methods

In this section, we will compare ArbRPN trained by the pro-
posed data augmentation framework, denoted as ArbRPN+,
with other SOTA methods for the known sensors test case.
Afterward, we will compare ArbRPN+ for the other test case
(i.e., unknown sensors).

1) Benchmark: To show the effectiveness of ArbRPN+,
we compare it with four SOTA DL methods for pansharpening.
Four metrics (i.e., SAM, ERGAS, Q2n, sCC) are used to
evaluate fused results at RR. The ideal value is O for SAM and
ERGAS, and 1 for Q2n and sCC. Three without reference met-
rics, D,, Dy and hybrid quality with non-reference (HQNR),
are used to evaluate results at FR. The ideal value is O for D;,

and Dy, and 1 for HQNR. Standard implementations have been
considered of these quality indexes [27], [28]. Specifically, the
adopted benchmark is as follows.

1) EXP: A 23-taps based interpolation applied for
pansharpening [31].

2) PNN: CNNs for pansharpening [15].

3) PanNet: Pansharpening network with high-pass filtered
MS and PAN images [19].

4) BIEDN: A band independent encoder—decoder network
for pansharpening [22].

5) ArbRPN: A pansharpening network for MS images with

arbitrary numbers of bands [2].

2) Results on Known Sensors: The numerical results for
this test case are reported in Table IV.

Results at RR: According to the results shown in Table IV,
on the one hand, we can find that ArbRPN+ achieves just
slightly worse results than ArbRPN. This is expected because
ArbRPN is a model dedicated to a specific sensor, which can
be viewed as the upper bound of ArbRPN+ for the given
specific sensor. On the other hand, ArbRPN+ outperforms all
the methods except ArbRPN, showing that training a model
for various sensors is feasible. To sum up, we have that
ArbRPN+ achieves results close to its upper bound (ArbRPN)
and outperforms the other SOTA methods at RR for the known
sensors test case demonstrating the ability of the proposed data
augmentation framework.

A visual comparison of an RR sample is shown in Fig. 4(a).
According to the RGB results, we can hardly say something
looking at 8-bits RGB images. On the other hand, we can
observe the residual images that clearly point out the advan-
tages in using ArbRPN and ArbRPN+ (fewer errors than the
compared approaches).

Results at FR: The results at FR in Table IV show a sensor-
based variability. However, looking at the overall results by
averaging for sensors, we can find that ArbRPN+ achieves
the best results followed by ArbRPN. There are two reasons
to justify the inversion in performance with respect to the RR
test cases. The first reason is due to the fact that ArtbRPN+- can
easily generalize with respect to the spatial degradation model.
Instead, ArbRPN relies upon fixed filters that can diverge with
respect to the real (and unknown) spatial models under the
particular sensor. The second point is the generalization ability
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TABLE IV
AVERAGE RESULTS ON DATA FROM Known Sensors. THE BEST AND THE SECOND-BEST RESULTS ARE IN BOLDFACE AND UNDERLINED, RESPECTIVELY

GF1 QB
Methods RR Results FR Results RR Results FR Results
SAM ERGAS Q2N sCC D Dg HQNR SAM ERGAS Q2N sCC Dy Dg HQNR
EXP 1.5506 1.5667 0.8086 | 0.9057 | 0.0110 | 0.0676 | 0.9222 | 1.8491 1.8315 0.6813 | 0.8622 | 0.0337 | 0.0962 | 0.8730
PNN 1.2928 1.2152 0.8941 | 0.9499 | 0.0280 | 0.0947 | 0.8798 | 1.1035 0.8830 0.8633 | 0.9768 | 0.0434 | 0.0623 | 0.9000
PanNet 1.2864 1.2190 0.8892 | 0.9511 | 0.0171 | 0.0524 | 0.9316 | 1.0440 0.8745 0.8711 | 0.9779 | 0.0303 | 0.0557 | 0.9176
BIEDN 1.1934 1.1154 09122 | 0.9582 | 0.0165 | 0.0497 | 0.9346 | 0.9331 0.7195 0.8805 | 0.9850 | 0.0180 | 0.0414 | 0.9420
ArbRPN 0.7435 0.6211 0.9586 | 0.9878 | 0.0175 | 0.0936 | 0.8900 | 0.7313 0.5975 0.9014 | 0.9908 | 0.0208 | 0.0374 | 0.9433
ArbRPN+ | 0.8416 0.6944 0.9522 | 0.9844 | 0.0110 | 0.0776 | 0.9132 | 0.8329 0.6288 0.8938 | 0.9881 | 0.0144 | 0.0658 | 0.9207
wv2 AVERAGE
SAM ERGAS Q2N sCC Dy Dg HQNR SAM ERGAS Q2N sCC Dy Dg HQNR
EXP 4.8346 7.3138 0.4650 | 0.7448 | 0.1031 | 0.1036 | 0.8048 | 2.7448 3.5707 0.6517 | 0.8367 | 0.0493 | 0.0891 | 0.8667
PNN 3.3222 3.1276 0.7258 | 0.9715 | 0.2009 | 0.1767 | 0.6859 | 1.9062 1.7419 0.8277 | 0.9661 | 0.0907 | 0.1112 | 0.8219
PanNet 3.4067 3.2344 0.7258 | 0.9693 | 0.1460 | 0.1541 | 0.7395 | 1.9124 1.7760 0.8287 | 0.9661 | 0.0644 | 0.0874 | 0.8629
BIEDN 3.2687 3.1168 0.7227 | 0.9716 | 0.1267 | 0.1872 | 0.7294 | 1.7984 1.6506 0.8385 | 0.9716 | 0.0537 | 0.0928 | 0.8687
ArbRPN 2.6868 2.4047 0.7418 | 0.9859 | 0.0832 | 0.1432 | 0.7941 | 1.3872 1.2078 0.8673 | 0.9882 | 0.0405 | 0.0914 | 0.8758
ArbRPN+ | 2.7980 2.5801 0.7425 | 0.9830 | 0.0509 | 0.1535 | 0.8084 | 1.4908 1.3011 0.8628 | 0.9852 | 0.0254 | 0.0986 | 0.8808

ARBRPN+

PANNET ARBRPN

PANNET Res.

PNN

PNN Res.

BIEDN Res. ARBRPN Res. ARBRPN + Res. GT Res.

PANNET

(b)

ARBRPN ARBRPN+

Fig. 4. Visual comparison for known sensors. (a) QB RR sample. “Res.” refers to the absolute residual image between the GT and the image obtained by
the corresponding method. (b) GF1 FR sample. The bottom row shows close-ups, i.e., the red rectangle area in the corresponding image in the top row.

of ArbRPN+ with respect to the changes of GSDs. Indeed,
the assumption of invariance among scales is not generally
valid for the training of neural networks pushing toward
the recent development of unsupervised learning strategies.
Thus, ArbRPN+ can address this problem providing a great
generalization ability of the network in the GSD direction
getting the same goal as unsupervised learning but working at

RRs following the same principles as done for the FR quality
assessment using extrapolation [32], [33].

A visual comparison of FR samples is shown in Fig. 4(b).
Again, for the other SOTA results, the visual comparison
is hard because of both the absence of a reference image
and of the comparison of three bands with 8-bits radiometric
resolution images. The differences among the compared
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TABLE V

AVERAGE RESULTS FOR Unknown Sensors. THE BEST AND
THE SECOND-BEST RESULTS ARE IN BOLDFACE
AND UNDERLINED, RESPECTIVELY

Methods \ RR Results [ FR Results

‘ SAM ‘ ERGAS ‘ Q2n ‘ sCC ‘ Dy ‘ Dg ‘ HQNR
EXP 4.0924 5.7735 0.6382 | 0.7555 | 0.0407 | 0.1113 | 0.8521
PNN 5.4058 5.6684 0.6287 | 0.8238 | 0.1948 | 0.1322 | 0.6912
PanNet 3.2274 4.6802 0.7331 | 0.8301 | 0.0452 | 0.1216 | 0.8371
BIEDN 4.2905 5.1758 0.7235 | 0.8458 | 0.0915 | 0.1176 | 0.7976
ArbRPN 4.1694 5.5836 0.6802 | 0.8109 | 0.0488 | 0.1159 | 0.8394
ArbRPN+ | 3.0423 3.1953 0.8265 | 0.9331 | 0.0362 | 0.1178 | 0.8493

approaches will become more clear for the more challenging
unknown sensors test case [see Fig. 5(b)].

3) Generalization on Unknown Sensors: To validate the
generalization of the proposed data augmentation framework
for unknown sensors, we compare the SOTA methods trained
for one known sensor, specifically, the models trained by GF1
data in Table IV, and ArbRPN+-, which is also the same model
in Table IV. The average results are reported in Table V.

Results at RR: According to the results at RR, we can find
that the performance gap between the DL methods and EXP
become smaller than that on known sensors. PNN achieves
even worse results than EXP for all the metrics except for sCC.

BIEDN

BIEDN Res.

5401711

ARBRPN-I—

ARBRPN Res. ARBRPN+ Res. GT Res.

ARBRPN

PANNET BIEDN ARBRPN ARBRPN+
PAN EXP PANNET BIEDN ARBRPN ARBRPN +

Visual comparison for the unknown sensors test case. (a) IK RR sample. “Res.”
obtained by the corresponding method. (b) IK FR sample. The bottom row shows close-ups, i.e., the red rectangle area in the corresponding image in the top
TOw.

refers to the absolute residual image between the GT and the image

ArbRPN and BIEDN achieve worse SAM results than EXP
as well. Only PanNet and ArbRPN+- obtain better results
than EXP for all the metrics. Moreover, ArbRPN+ shows a
big improvement compared with ArbRPN and all the other
methods, which indicates the effectiveness of the proposed
data augmentation mechanism.

Fig. 5(a) shows a visual comparison for an IK RR sample.
From the RGB images, we can find that EXP obtain more
blurred results than the other methods. The results of PNN
have some unexpected textures in the arable land. Similar to
the visual comparison for known sensors, we visualize the
residual images between GT and the result obtained by the
corresponding method. It is straightforward that ArbRPN-+
achieves the best results showing fewer errors than all the
other fused products.

Results at FR: As shown in Table V, excluding the EXP
approach that produces no spatial enhancement, ArbRPN-+
achieves the best results on FR test cases. A visual comparison
is provided in Fig. 5(b), according to the close-ups, we can see
clear spatial distortions, i.e., the ringing artifacts close to the
edges, for PNN, PANNET, BIEDN, and ArbRPN. Conversely,
ArbRPN+ has fewer spatial distortions than these methods,
thus showing better performance for ArbRPN+-.
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V. CONCLUSION

In this article, we studied the generalization of PNNs
from the perspective of data augmentation. According to

the

MTF approximation using gains at Nyquist frequency,

a random anisotropic Gaussian-shaped MTF degradation has
been proposed to increase the diversity in degrading MS
images for training neural networks. Furthermore, a GSD
rescaling module has been introduced to both improving the
networks generalization and the performance at FR increas-
ing the generalization with respect to spatial resolution. The
ablation study demonstrated the effectiveness of these aug-
mentation approaches. Experimental results showed that a
network trained by the proposed data augmentation framework
gets better generalizations with respect to both sensor and
resolution. It is worth emphasizing that the proposed approach
is almost a free-lunch to get better generalization retaining

the

same number of iterations for training of the original

architecture where it has been applied.
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