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Abstract— Graph convolutional networks (GCNs) have
recently received increasing attention in hyperspectral image
(HSI) classification, benefiting from their superiority in con-
ducting shape adaptive convolutions on arbitrary non-Euclidean
structure data. However, the performance of GCN heavily
depends on the quality of the initial graph. Conventional GCN-
based methods only adopt spectral–spatial similarity to build
the initial graph without extracting other contextual information
from neighboring nodes. In addition, most GCN-based methods
use shallow layers, which cannot extract deep discriminative
features from HSIs under the limited number of training samples.
To solve these issues, we propose a superpixel feature learning
via offset graph U-Net for HSI classification, which can learn
deep discriminative features from HSIs. Multiple strategies of
measuring similarity among superpixels are utilized to build the
initial graph, including spectral information, spatial information,
and context-aware information among nodes, making the initial
graph more accurate. Furthermore, the graph U-Net structure,
containing the graph pooling layer and the graph unpooling
layer, is helpful in constructing deep GCN layers and learning
multiscale features, which can alleviate the oversmoothing prob-
lem. Moreover, an offset module is introduced to emphasize the
local spectral–spatial information. Finally, we comprehensively
evaluate the proposed method on three public datasets. The
experimental results demonstrate the superiority of the proposed
approach compared with other state-of-the-art methods.

Index Terms— Classification, graph convolutional network
(GCN), graph U-Net, hyperspectral imaging, multiresolution
analysis, remote sensing, superpixel feature learning.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) consist of many nar-
row contiguous bands that carry the spectral information

leading to their use for mineral exploration [1], agricultural
evaluation [2], and other fields [3]. HSI classification is a hot

Manuscript received 31 March 2023; revised 26 June 2023; accepted 6
August 2023. Date of publication 22 August 2023; date of current version
1 September 2023. This work was supported in part by the National Natural
Science Foundation of China under Grant 62072216 and in part by the
China Scholarship Council (CSC) under Grant 202206790097. (Correspond-
ing author: Guanghui Li.)

Rong Chen, Guanghui Li, and Chenglong Dai are with the School
of Artificial Intelligence and Computer Science, Jiangnan University,
Wuxi 214122, China (e-mail: jnuc_r@163.com; ghli@jiangnan.edu.cn;
chenglongdai@jiangnan.edu.cn).

Gemine Vivone is with the National Research Council, Institute of Method-
ologies for Environmental Analysis (CNR-IMAA), 85050 Tito, Italy, and also
with the National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
(e-mail: gemine.vivone@imaa.cnr.it).

Jocelyn Chanussot is with CNRS, Grenoble Institute of Technology (Greno-
ble INP), GIPSA-Lab, University of Grenoble Alpes, 38000 Grenoble, France
(e-mail: jocelyn.chanussot@grenoble-inp.fr).

Digital Object Identifier 10.1109/TGRS.2023.3307609

topic. It aims to assign each pixel to a certain class based on
the image contents [4], [5].

Over the past few decades, various traditional pattern
recognition methods have been proposed for HSI classifica-
tion, such as support vector machine (SVM) [6], K-nearest
neighbor classifier [7], and multinomial logistic regression
(MLR) [8]. Subsequently, sparse representation [9] and collab-
orative representation [10] have been widely exploited for HSI
classification. Despite the success achieved by these methods,
they heavily rely on handcrafted configurations. To solve this
problem, deep learning-based methods offer an ideal solution
to automatically extract high-level discriminative features by
fusing the low-level features without handcrafted feature engi-
neering. Convolutional neural networks (CNNs) [11] are the
most representative methods and have been extensively investi-
gated thanks to their ability to explore spectral–spatial features
from HSIs. Various CNN-based methods have been developed
for HSI classification from lightweight CNNs [12] to heavy-
weight CNNs [13] and from single-channel CNNs [14] to
multichannel CNNs [15], generating more and more complex
architectures. Furthermore, to make the CNN-based network
easier to train, dense connection [16] and residual connec-
tion [17], [18] were introduced. Subsequently, to fully use
spectral–spatial information, a two-stream CNN approach [19]
was employed to perform deep feature fusion and extract local
and global spectral–spatial features under the limited training
sample size. Furthermore, the attention mechanism [20] has
been utilized for HSI classification to emphasize essential fea-
tures, such as the spectral–spatial attention network [21] and
the attention-based adaptive residual network [22]. However,
while feature extraction is powerful, some limitations exist in
CNN-based methods. On the one hand, CNNs fail to precisely
extract the geometric variations of different object regions due
to the convolution on regular square areas. On the other hand,
CNNs require many training parameters, and they are prone
to overfitting when the training samples are scarce.

Besides CNNs, some other high-performance networks have
been used for HSI classification. Recurrent neural networks
(RNNs) [23] have been proposed to extract spectral infor-
mation from HSIs, regarding spectral bands as a sequence,
thus effectively capturing the correlation among adjacent
spectral bands. Subsequently, Hang et al. [24] presented a
cascaded RNN to extract the redundant and complemen-
tary information of HSIs by employing gated recurrent
units (GRUs). Meanwhile, generative adversarial networks
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(GANs) [25], [26], [27], stacked autoencoders (SAEs) [28],
and capsule networks [29] have also been adopted for
HSI classification. Moreover, leveraging on transformer [30],
transformer-based methods have been applied for HSI classifi-
cation. The raw transformer in [30] has been exploited for nat-
ural language processing (NLP) via adopting a self-attention
mechanism. Sun et al. [31] proposed a spectral–spatial fea-
ture tokenization transformer (SSFTT) to extract high-level
spectral–spatial features from HSI. Furthermore, morpholog-
ical attention transformer (morphFormer) [32], dual context
network with transformer [33], and spectral-swin transformer
[34] have been considered for HSI classification.

The recently developed graph convolutional network (GCN)
has received increasing attention thanks to its ability to arbi-
trarily process structured graphs, thus exhaustively extracting
spectral–spatial features and preserving the class bound-
aries [35], [36]. Unlike conventional CNNs that adopt shape-
fixed convolutional kernels, GCNs can conduct convolutions
on arbitrarily irregular image regions to learn geometric
variations of diverse land covers. Hence, several GCN-
based methods [37], [38], [39] have been proposed for
HSI classification to model spatial topologies of HSIs and
learn the relationships among different objects. For instance,
a spectral–spatial GCN (S2GCN) [40] was designed to explore
spectral–spatial information based on spectral similarity and
spatial distance. Mou et al. [41] presented a nonlocal GCN
to capture the correlations among any two pixels in HSIs.
Nevertheless, treating each pixel as a graph node in these
methods may result in a huge amount of calculation, limiting
its applicability. To solve this issue, superpixel-based GCN
methods [42], [43], [44], which consider each superpixel as
a graph node, were proposed to capture large-scale spatial
topologies of HSIs reducing the computational burden. Sub-
sequently, to simultaneously extract superpixel-level features
and pixel-level features from HSIs, Liu et al. [45] presented
a CNN-enhanced GCN (CEGCN), which introduced a GCN
(extracting superpixel-level features) and CNN (extracting
pixel-level features) into a network framework. Furthermore,
GCN methods based on multifeature extraction [46], [47], [48]
were proposed to fully use multiresolution features from HSIs.
Liu et al. [49] merged neighboring nodes and transformed
them into multiresolution graphs to extract features from
a hierarchical perspective. Subsequently, Lin et al. [50] pre-
sented a context-aware attention graph U-Net (CAGU), which
can not only extract intraclass embeddings via attentional
graph U-Net but also capture context-aware information by
GRU. Besides, to alleviate the oversmoothing problem caused
by the deepening of GCN layers, Guo et al. [51] presented
a two-stream graph U-Net method to build a deep network.
However, the performance of this method is reduced when a
limited number of training samples are considered.

Overall, the existing GCN-based methods still suffer from
some challenges. First, the performance of GCN-based meth-
ods heavily relies upon the quality of the initial graph. Hence,
a critical issue is how to describe the similarity of neighboring
nodes in a more accurate fashion. Indeed, conventional GCN
methods only adopt spectral–spatial similarity to build an

initial graph without extracting the context information within
and among superpixels. Second, due to the spectral variability
and noise present in raw HSI data, deep GCN layers work
fine in extracting discriminative features from HSIs. Third,
acquiring labeling pixels in HSIs requires experts’ knowledge
and is quite time-consuming and expensive. Hence, it is
important to achieve good performance for HSI classification
with a small number of labeled samples.

To tackle the abovementioned issues, a simple but effec-
tive superpixel feature learning via offset graph U-Net is
proposed for HSI classification to extract deep discrimina-
tive spectral–spatial features. Unlike conventional GCN-based
methods that only employed spectral–spatial similarity to con-
struct the raw graph, we explore the multiple spectral–spatial
information among superpixels to build a graph containing
spectral–spatial information and context-aware information.
In addition, we propose the use of an offset graph U-Net to
extract spectral–spatial features from HSIs for the following
two reasons: 1) graph U-Nets, including the graph pooling
layer (gPool) and the graph unpooling layer (gUnpool), can
extract multiresolution features on the multilevel graph and
also increase the depth of the network with limited com-
puting resources and 2) the offset module can emphasize
the local spectral–spatial information extracted by GCNs,
improving HSI classification performance. More specifically,
we transform (through a spectral transformation) the raw
HSI to reduce the useless information and segment it into
superpixels. Afterward, we conduct feature extraction by an
offset graph U-Net after building a multifeature adjacency
matrix to extract spectral–spatial features from HSIs. Finally,
the superpixel-level features are converted into pixel-level
features for pixel-level classification.

In summary, the main contributions of this work can be
summarized as follows.

1) We propose a superpixel feature learning via offset graph
U-Net for HSI classification, which can learn deep dis-
criminative spectral–spatial features and multiresolution
features using graphs working at different scales with
a reduced number of training parameters. Besides, the
gPool and the gUnpool can alleviate the oversmoothing
problem when deepening the depth of the network.

2) We propose to use multiple spectral–spatial information
among superpixels to measure the similarity among
nodes, thus getting a more accurate version of the initial
graph and enhancing the features’ representation ability.
Furthermore, in this phase, a new CNN-based spectral
extraction module is considered to support the graph
construction when redundant and noisy information is
taken in input (which is often the case for HSIs).

3) To emphasize the local spectral–spatial information,
an offset module is proposed for graph U-Nets to further
improve the classification accuracy.

The remaining of this article is organized as follows.
Section II presents the related works. Section III describes the
proposed method. The wide experimental analysis on three
HSI datasets is provided to the readers in Section IV. Finally,
the concluding remarks are drawn in Section V.
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II. RELATED WORKS

A. Graph Convolutional Network

GCN [52], a multilayer neural network, is adopted for clas-
sification on arbitrary non-Euclidean data, which can directly
operate on graphs and generate node embeddings by aggregat-
ing features from neighboring nodes. More specifically, given
an undirected graph, G = (V, E), where V and E are the sets
of nodes and edges, respectively, the adjacency matrix A of G
(representing the edge weight between each pair of nodes) is
calculated as

Ai j =

{
1, if xi ∈ N

(
x j
)

or x j ∈ N(xi )

0, otherwise
(1)

where xi and x j denote the graph nodes and N(xi ) is the set
of neighbors of xi .

The convolution operation on graphs can be expressed as
a signal x multiplied by a filter gθ = diag(θ) (where diag(·)

indicates a diagonal matrix) in the Fourier domain, which is
defined as

gθ ⋆ x = UgθU⊤x (2)

where ⋆ is the multiplication operation, ·
⊤ is the transpose

operator, U denotes the eigenvectors of the normalized graph
Laplacian denoted by L = I − D−1/2AD−1/2

= U3U⊤, I
represents the identity matrix, D denotes the degree matrix
Di i =

∑
j Ai j , 3 is the diagonal matrix of its eigenvalues, and

U⊤x is the graph Fourier transform of x. To reduce the high
computational complexity of the eigenvector decomposition,
Hammond et al. [53] proposed to approximate gθ (3) by the
Chebyshev polynomials, Tk(x), up to the K th order

gθ ′(3) ≈

K∑
k=0

θ ′

k Tk
(
3̃

)
(3)

where θ ′

k is a vector of the Chebyshev coefficients and 3̃ =

(2/λmax)3 − I, with λmax being the largest eigenvalue of L.
The Chebyshev polynomials are recursively defined as Tk(x) =

2xTk−1(x) − Tk−2(x) with T0(x) = 1 and T1(x) = x. Thus,
we can approximate the convolution of the signal x by the
filter gθ ′ as

gθ ′ ⋆ x ≈

K∑
k=0

θ ′

k Tk
(
L̃

)
x (4)

where L̃ = (2/λmax)L − I, which can be verified by
(U3U⊤)k

= U3kU⊤. It is worth noting that Tk(·) is
the K th-order polynomials of the Laplacian. Kipf and
Welling [52] approximated λmax to 2. Hence, when K = 1,
(4) is given as follows:

gθ ′ ⋆ x ≈ θ ′

0x + θ ′

1(L − I)x = θ ′

0x − θ ′

1D−
1
2 AD−

1
2 x (5)

where θ ′

0 and θ ′

1 are two free parameters. Given θ = θ ′

0 =

−θ ′

1, (5) can be simplified as

gθ ⋆ x ≈ θ
(

I + D−
1
2 AD−

1
2

)
x. (6)

To further reduce the number of parameters, Kipf and
Welling [52] set I + D−1/2AD−1/2

→ D̃−1/2ÃD̃−1/2 with

Ã = A+I and D̃i i =
∑

j Ãi j . Thus, the final graph convolution
can be expressed as

H(l+1)
= σ

(
D̃−

1
2 ÃD̃−

1
2 H(l)W(l+1)

)
(7)

where H(l+1) is the output of the (l + 1)th layer, σ(·) denotes
the activation function, and W(l+1) represents a trainable
parameter.

B. Graph U-Nets

Graph U-Nets [54], an encoder–decoder module, introduce
the gPool (downsampling) and graph unpooling (upsampling)
layers on graph data. In gPool, a new graph is obtained by
selectively choosing a subset of nodes from the original graph,
resulting in a smaller graph structure. The process of graph
pooling for layer l is expressed as

y = XlPl/∥Pl
∥1 (8)

idx = rank(y, k) (9)

ŷ = sigmoid(y(idx)) (10)

X̂
l
= Xl(idx, :) (11)

Al+1
= Al(idx, idx) (12)

Xl+1
= X̂l

⊙
(
ŷ1⊤

)
(13)

where X is the graph node representation, P denotes a trainable
projection vector, ∥ · ∥1 represents the l1-norm, rank(y, k) is
the node ranking function, sigmoid(·) is the sigmoid function,
which selects the k-largest values in y, idx is the index
of the nodes of the new graph, Al+1 and Xl+1 indicate
the new adjacency matrix and the new graph representation,
respectively, ⊙ is the elementwise matrix multiplication, and
1⊤ is an all-ones vector.

The gPool aims to reduce the number of graph nodes.
Instead, in the gUnpool, the number of graph nodes needs
to be upsampled to restore them to their original structure.
To accomplish this, the positions of the nodes selected in
the corresponding gPool are stored, and this information is
exploited to reposition the nodes to their original locations
within the graph. The process of gUnpool is denoted as

Xl+1
= distribute

(
0, Xl , idx

)
(14)

where idx is the index of the nodes in the corresponding gPool,
0 denotes the (initially empty; i.e., an all-zeros matrix) graph
representation for the new graph, and distribute(·) arranges
(based on the indexes specified in idx) the row vectors in Xl

into the graph representation 0.

III. PROPOSED APPROACH

The structure of the proposed method is shown in Fig. 1,
which contains three components: graph construction, feature
extraction, and pixelwise classification. In the following, each
component will be described in detail.

A. Notation

The mathematical notation used in this article is given as
follows. Scalars are denoted by lowercase letters (e.g., x).
Matrices (2-D and 3-D arrays) and vectors are expressed in
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Fig. 1. Architecture of the proposed method.

uppercase bold letters (e.g., X) and lowercase bold letters
(e.g., x), respectively. Euler script letters are used for sets
(e.g., G). We define HSIs as X̃ ∈ RH×W×B with H , W , and B
being the height, the width, and the number of spectral bands,
respectively. X = {x1, x2, . . . , xM} is the graph representation
of G, where M is the number of nodes (superpixels). Finally,
xi refers to the i th node.

B. Graph Construction
As shown in Fig. 1, the graph construction contains three

parts: superpixel map, spectral extraction, and multifeature
adjacency matrix. First, we need to convert pixel-level HSI
into superpixel-level (P-SP) based on a superpixel map. Mean-
while, spectral extraction is used to reduce the noise and redun-
dant information among spectral bands. Then, we can obtain
the initial graph representation by an assignment matrix O.
Finally, the multifeature adjacency matrix is constructed to
obtain the graph.

1) Superpixel Map: The computational complexity of graph
convolution on the original HSI may be unacceptable due
to a large number of pixels. To solve this problem, the
simple linear iterative clustering (SLIC) [55] is exploited to
divide the HSI into several homogeneous superpixels with
high spectral–spatial similarity, which creates segmentation
by iteratively local clustering using the k-means algorithm.
In this way, the long-range relationship among pixels can
be more effectively characterized because superpixel depen-
dencies are much longer than those extracted by pixel-level
convolutions [56]. Specifically, the HSI X̃ ∈ RH×W×B is
segmented into M = ⌈(H × W )/σ⌉ superpixels, where σ

is the parameter used to control the size of the graph. Each
superpixel is regarded as a graph node, greatly improving the
computational efficiency. Let O ∈ RH W×M be the assignment
matrix among pixels and superpixels obtained by the SLIC.
Thus, we have

Oi, j =

{
1, if x̃ i ∈ S j

0, otherwise
(15)

where Oi, j is the i th pixel belonging to the j th superpixel,
x̃ i denotes the i th pixel in X̄ ∈ RH W×B , X̄ = Flatten(X̃),
Flatten(·) is the flatten operator, and S j indicates the j th
superpixel.

2) Spectral Extraction: HSIs consist of hundreds of spec-
tral bands, thus presenting redundant information and noise.
To extract more discriminative spectral features from HSIs,
a nonlinear transformation is adopted to each pixel, using a
two-layer standard convolution with kernel size 1×1 to process
X̃ . In 2-D convolution, the output feature of a neuron f xy

i, j at
position (x, y) in the j th feature map of the i th layer is denoted
as

f xy
i j = 8

(∑
r

wi jr f (x+1)(y+1)
(i−1)r + bi j

)
(16)

where r is the number of kernels, 8 denotes the activation
function, and w and b represent the kernel weight and bias,
respectively. After the end of the spectral extraction, the
redundant information and the uncorrelated noise are reduced.

Hence, the representation of each node (i.e., superpixel) is
the mean of the spectral bands of the pixels in the correspond-
ing superpixel, which can be expressed as

X = O⊤ X̄ (17)

where X = {x1, x2, . . . , xM} is initial graph representation and
M is the number of nodes. X̄ = Flatten(X̃).

3) Multifeature Adjacency Matrix: The quality of the pre-
defined graph strongly influences the performance of GCNs.
Thus, it is crucial to accurately draw the relationships among
nodes. Furthermore, every superpixel represents a perceptually
significant region, and its shape and size can be dynamically
adjusted to adapt it to several spatial structures. Conventional
GCN methods only exploit the spectral information among
graph nodes when constructing the adjacency matrix, ignoring
the internal spatial context information. Hence, we pro-
pose, in this work, a multifeature adjacency matrix (i.e.,
the spectral adjacency matrix, the spatial adjacency matrix,

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on September 07,2023 at 09:48:56 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: OFFSET GRAPH U-Net FOR HSI CLASSIFICATION 5520615

and the context-aware adjacency matrix) to effectively extract
spectral–spatial information within and among superpixels.

More in detail, the spectral adjacency matrix is computed
by

Aspe
i j =

{
∥xi − x j∥

2
1, i ̸= j

0, i = j
(18)

where xi is the representation of the i th graph node. In general,
one land cover in HSIs is divided into many smaller compact
regions during the segmentation process. Hence, the spatially
neighboring superpixels tend to be in the same category.
Therefore, the spatial information is introduced to measure
the similarity of graph nodes. The spatial adjacency matrix is
expressed as

Aspa
i j =

{
∥pi − p j∥

2
1, i ̸= j

0, i = j
(19)

where pi is the spatial centroid coordinate of xi .
To exploit more spectral–spatial information among super-

pixels, we introduce the context-aware adjacency matrix,
which describes the contextual relationships among neighbor-
ing nodes. A weighted averaging procedure is carried out
among the neighboring superpixels, Si j (see Fig. 2), j =

1, 2, . . . , J , of the central superpixel, Si . Thus, we have

Acon
i j =

{
∥x́ i − x́ j∥

2
1, i ̸= j

0, i = j
(20)

where x́ i is the i th weighted average superpixel defined as

x́ i =

 J∑
j=1

µi j xi j

⊗ xi . (21)

⊗ is the elementwise product, and µi j denotes the weight,
which is expressed as [57]

µi j =
exp
(
−∥xi j − xi∥

2
2/h
)∑J

j=1 exp
(
−∥xi j − xi∥

2
2/h
) . (22)

J is the number of neighboring superpixels of Si , and h is
empirically set to 15.

Therefore, A can be calculated as

Ai j =

{
9η,ε

(
Ac

i j

)
, if xi ∈ N

(
x j
)

or x j ∈ N(xi )

0, otherwise
(23)

where Ac
i j = (Aspe

i j , Aspa
i j , Acon

i j ); 9η,ε(Ac
i j ) = exp(−∥Aspe

i j +

ηAspa
i j + εAcon

i j ∥
2); η and ε are the spatial and the context-

aware coefficients, respectively, which are training parameters
with initial values equal to 1; and N(x j ) and N(xi ) denote the
set of neighbors of x j and xi , respectively. In this way, three
kinds of superpixel-based information (spectral, spatial, and
context-aware ones) are considered in the adjacency matrix.

C. Feature Extraction

GCNs are widely utilized for data in non-Euclidean spaces
and can effectively preserve class boundaries for HSI classi-
fication. However, traditional GCN methods adopted (one or
two) shallow layers to extract features from HSIs. Instead, it is

Fig. 2. Instance showing the current superpixel, Si , and its neighboring
superpixels, Si1, . . . , Si5.

Fig. 3. Illustration of the offset graph U-Net module. The dotted line refers
to the skip connection.

still challenging to extract deep discriminative features, espe-
cially in complex HSI scenes. Hence, the gPool is introduced
to GCNs to reduce graph size and increase the receptive field.
In addition, gPools can preserve nodes that contain critical
information while discarding irrelevant graph nodes. In this
article, an offset module is designed to emphasize the crucial
local spectral–spatial information. The illustration of the offset
graph U-Net module is shown in Fig. 3. First, we exploit a
GCN layer to learn low-dimensional representations. After-
ward, the encoder is constructed by stacking several blocks,
each consisting of a GCN layer followed by a gPool layer.
In the decoder part, the same number of blocks is stacked,
each consisting of a GCN layer, a gUnpool layer, and an
offset module. Finally, two GCN layers and an offset module
are used to further extract discriminative features. The graph
convolution operation in the proposed method is expressed as

H(l+1)
= σ

(
D̃−

1
2 ÃD̃−

1
2 H(l)W(l+1)

)
(24)

where H(l+1) is the output of the (l + 1)th layer, σ(·) denotes
the activation function, and W(l+1) represents a trainable
parameter.

The initial graph embedding is fed into the offset graph
U-Net, and after a series of graph convolution and gPools,
the graph features are extracted by the GCN in a fine-to-
coarse manner. Afterward, these graph features are fed into
the subsequent graph convolution, gUnpools, and the offset
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Fig. 4. Illustration of the offset module. The dotted line refers to the skip
connection.

module to be fused in a coarse-to-fine manner. This U-Net
structure tends to extract multiresolution spectral–spatial infor-
mation from HSIs. We adopt skip connections between the
pooling–unpooling pairs to better fuse different stages features
and prevent feature loss during graph unpooling. Besides,
the GCN is utilized for gathering information from adjacent
nodes. As a result, the crucial information transmitted by the
neighboring nodes is represented by the offset features before
and after the extraction. The illustration of the offset module
is shown in Fig. 4. The offset features are obtained by the
elementwise subtraction of the gPool’s input features from the
gUnpool’s output features, where the subtraction operator acts
as a filter. Afterward, the offset features are fed into the LBS
(i.e., the linear, batch norm, and sigmoid function) block to
obtain the weighted features. Then, we multiply the gUnpool’s
output features and the weighted features adding the outcome
to the gPool’s input features in an elementwise manner. Hence,
the output of the offset module is

Hoff = LBS
(
Hg P − HgU

)
⊗ HgU + Hg P (25)

where Hg P denotes the input feature of the gPool, HgU

is the output feature of the gUnpool, and ⊗ indicates the
elementwise product operation. Thus, with the support of
the offset module, the proposed GCN can aggregate useful
features within neighboring nodes to improve classification
performance.

D. Pixelwise Classification

The task of HSI classification aims to assign a specific label
to each pixel. After feature extraction, the superpixel-level
features, Hfinal, extracted by the proposed offset graph U-Net,
need to be reprojected into pixel level (SP-P) for conducting
pixelwise classification. More specifically, the SP-P assign-
ment is accomplished by linearly interpolating pixel features
based on the assignment matrix O. Thus, we have that the
pixel-level features, P, are defined as

P = Reshape(OHfinal) (26)

TABLE I
STATISTICS OF THE INDIAN PINES DATASET

TABLE II
STATISTICS OF THE PAVIAU DATASET

where Reshape(·) refers to the reconstruction of the spatial
dimensions of data where the flatten operator has been applied.
To further explore the local spectral–spatial information, the
pixel-level features, P, are fed into 2-D convolution layers.
In the end, a softmax layer is used for predicting per-pixel
class probabilities. In this work, the classic cross-entropy error
is adopted as HSI classification loss, L, which is defined as

L = −

T∑
i=1

C∑
j=1

Yi j log
(
Ŷ i j
)

(27)

where T and C are the numbers of training samples and
classes, respectively, and log is the natural logarithm, while
Y and Ŷ denote the label and predicted matrices, respectively.

IV. EXPERIMENTAL ANALYSIS

To evaluate the effectiveness of the proposed method,
we conducted extensive experiments on three public HSI
datasets, i.e., Indian Pines, the University of Pavia (PaviaU),
and Salinas. Four evaluation metrics, i.e., per-class accuracy,
overall accuracy (OA), average accuracy (AA), and Kappa
coefficient (Kappa), have been used to evaluate the perfor-
mance of the compared approaches.

A. Datasets

In these experiments, we evaluate the proposed method on
three widely used HSIs. The false-color image and the ground-
truth map of the three datasets are shown in Figs. 5–7. Besides,
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TABLE III
STATISTICS OF THE SALINAS DATASET

Fig. 5. (a) False-color representation of the Indian Pines dataset (bands 29,
19, and 9). (b) Ground truth for the Indian Pines dataset. (c) Color map.

Fig. 6. (a) False-color representation of the PaviaU dataset (bands 80, 60,
and 35). (b) Ground truth for the PaviaU dataset. (c) Color map.

Fig. 7. (a) False-color representation of the Salinas dataset (bands 36, 30,
and 35). (b) Ground truth for the Salinas dataset. (c) Color map.

TABLE IV
INFLUENCE OF DIFFERENT NUMBERS OF EPOCHS. BOLD: BEST;

UNDERLINE: SECOND BEST

Tables I–III detail the statistics of the three datasets, including
the size of training and testing samples.

The first dataset is Indian Pines, gathered by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
Northwest Indian. This dataset contains 16 classes and has
145 × 145 pixels with 20-m/pixel spatial resolution. After
removing 24 water absorption bands, there are 200 spectral
bands left in Indian Pines covering the spectrum from 0.4 to
2.5 µm.

The second dataset is PaviaU, collected by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor over
PaviaU, Italy. This dataset contains nine classes and has 610 ×

340 pixels with 1.3-m/pixel spatial resolution. After removing
12 noisy bands, there are 103 spectral bands left in PaviaU
covering the spectrum from 0.43 to 0.86 µm.

The third dataset is Salinas, acquired by the AVIRIS sensor
over Salinas Valley, USA. This dataset contains 16 classes and
has 512 × 217 pixels with 3.7-m/pixel spatial resolution. After
removing 20 water absorption bands, there are 204 spectral
bands left covering the spectrum from 0.4 to 2.5 µm.

B. Experimental Setup

In the experiments, the proposed method is implemented
in Pytorch with an Adam optimizer. The learning rate is
5e − 4. Table IV reports the performance of the proposed
method varying the number of epochs. We can see that
the proposed method achieves the best accuracy when the
number of training epochs is 400. For each dataset, we ran-
domly choose 30 examples (i.e., pixels) per class for train-
ing or 15 examples if there are less than 30 examples in
the corresponding category. To demonstrate the effectiveness
of the proposed method, several state-of-the-art HSI clas-
sification methods are used for comparison, including the
spatial–spectral CNN-based methods (two-dimensional CNN
(2DCNN) [58], 3-D deep learning approach (3DCNN) [59],
spectral–spatial residual network (SSRN) [60], and attention-
based adaptive spectral–spatial kernel Resnet (A2S2K) [22]),
the GAN-based method (3DGAN [25]), the transformer-based
method (SSTN [61]), and the GCN-based methods (dual graph
U-Nets (DGUs) [51], residual GCN (DRGCN) [62], and multi-
level superpixel structured graph U-Nets (MSSGUs) [49]). The
hyperparameters of the compared approaches are in agreement
with the ones used in the original papers. All these methods
are run ten times to obtain stable and reliable results on each
HSI dataset, and the AA and the related standard deviation
are reported. All the experiments are executed on Intel core
i7-10700, 2.9 GHz, 16-GB RAM, and GTX 1660Ti GPU.

C. Experimental Results

To evaluate the effectiveness of the proposed method,
the classification results of the compared methods on the
Indian Pines, PaviaU, and Salinas datasets are shown in
Tables V–VII. The best and second-best scores are highlighted
in bold and underlined, respectively. Besides, Figs. 8–10
show the classification maps on the three datasets for all the
compared approaches.

1) Results on the Indian Pines Dataset: For the Indian
Pines dataset, the classification results obtained by the various
approaches are reported in Table V. It can be observed that
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TABLE V
CLASSIFICATION PERFORMANCE ON THE INDIAN PINES DATASET. BOLD: BEST; UNDERLINE: SECOND BEST

Fig. 8. Classification maps of the different methods on the Indian Pines dataset. (a) False-color image (bands 29, 19, and 9). (b) Ground truth. (c) 2DCNN
(OA = 51.53%). (d) 3DCNN (OA = 76.58%). (e) SSRN (OA = 89.08%). (f) A2S2K (OA = 87.26%). (g) 3DGAN (OA = 85.93%). (h) SSTN (OA =

92.43%). (i) DGU (OA = 73.62%). (j) DRGCN (OA = 92.26%). (k) MSSGU (OA = 95.85%). (l) Proposed (OA = 96.84%).

TABLE VI
CLASSIFICATION PERFORMANCE ON THE PAVIAU DATASET. BOLD: BEST; UNDERLINE: SECOND BEST

TABLE VII
CLASSIFICATION PERFORMANCE ON THE SALINAS DATASET. BOLD: BEST; UNDERLINE: SECOND BEST

the proposed method achieves the best and most stable (i.e.,
with the smallest standard deviation) performance among the

competitors concerning OA, AA, and Kappa, respectively.
Furthermore, it is worth noting that the proposed method
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Fig. 9. Classification maps of the different methods on the PaviaU dataset. (a) False-color image (bands 80, 60, and 35). (b) Ground truth. (c) 2DCNN
(OA = 59.26%). (d) 3DCNN (OA = 77.99%). (e) SSRN (OA = 89.42%). (f) A2S2K (OA = 85.31%). (g) 3DGAN (OA = 90.52%). (h) SSTN (OA =

93.42%). (i) DGU (OA = 74.71%). (j) DRGCN (OA = 91.93%). (k) MSSGU (OA = 93.49%). (l) Proposed (OA = 95.66%).

Fig. 10. Classification maps of the different methods on the Salinas dataset. (a) False-color image (bands 36, 30, and 35). (b) Ground truth. (c) 2DCNN
(OA = 67.24%). (d) 3DCNN (OA = 82.53%). (e) SSRN (OA = 94.09%). (f) A2S2K (OA = 95.17%). (g) 3DGAN (OA = 93.62%). (h) SSTN (OA =

94.88%). (i) DGU (OA = 78.48%). (j) DRGCN (OA = 99.48%). (k) MSSGU (OA = 99.45%). (l) Proposed (OA = 99.68%).

ranks first and second for ten and six classes, respectively.
Moreover, the proposed method is the fastest approach among
the competitors, and the number of parameters is limited. This
demonstrates the proposed method’s effectiveness, efficiency,
and stability compared to the state-of-the-art approaches used
for comparison. About the CNN-based methods, SSRN and

A2S2K achieve better performance, benefiting from adopting
the dense and residual connections. The improvement of the
proposed method over both the GCN-based methods (i.e.,
DRCCN and MSSGU) is higher than 4.58% and 0.99% on
OA, respectively. Furthermore, since the proposed method
incorporates the multiple superpixel information to build a

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on September 07,2023 at 09:48:56 UTC from IEEE Xplore.  Restrictions apply. 



5520615 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 11. OAs obtained by some representative methods varying the numbers of training samples per class. (a) Indian Pines. (b) PaviaU. (c) Salinas.

TABLE VIII
PERFORMANCE (OA) OF THE PROPOSED METHOD ON THE INDIAN PINES DATASET UNDER DIFFERENT NETWORK DEPTHS AND HIDDEN KERNEL SIZES

FOR THE GCN LAYERS. BOLD: BEST; UNDERLINE: SECOND BEST

TABLE IX
PERFORMANCE (OA) OF THE PROPOSED METHOD ON THE PAVIAU DATASET UNDER DIFFERENT NETWORK DEPTHS AND HIDDEN KERNEL SIZES FOR

THE GCN LAYERS. BOLD: BEST; UNDERLINE: SECOND BEST

TABLE X
PERFORMANCE (OA) OF THE PROPOSED METHOD ON THE SALINAS DATASET UNDER DIFFERENT NETWORK DEPTHS AND HIDDEN KERNEL SIZES FOR

THE GCN LAYERS. BOLD: BEST; UNDERLINE: SECOND BEST

Fig. 12. Performance of the proposed method with different segmentation
scales on the three datasets.

more accurate graph, it performs better than MSSGU on some
land cover categories, such as “Grass-pasture (ID = 5)” and
“Stone-steel-towers (ID = 16).”

Fig. 8 depicts the classification maps obtained by the
compared methods on the Indian Pines dataset, where the
false-color image and the ground-truth map are shown in
Fig. 8(a) and (b), respectively. We can observe that the
classification maps acquired by the CNN-based methods
(i.e., 2DCNN and 3DCNN) are quite confusing. By contrast,

the classification map of the proposed method is smoother,
even showing fewer misclassifications compared with the
other techniques.

2) Results on the PaviaU Dataset: Table VI reports the
classification results of the compared methods on the PaviaU
dataset. The proposed approach achieves the optimal clas-
sification performance in terms of OA, AA, and Kappa,
respectively, which again demonstrates the strength of the pro-
posed method in extracting features from HSIs. Specifically,
compared with the CNN-based methods, the proposed method
outperforms SSRN and A2S2K by 6.24% and 10.35% on OA,
respectively, which indicates that the spectral features and
spatial correlations extracted by our method are more effective.
Besides, our method outperforms the second-best approach
(MSSGU) on OA, AA, and Kappa by 2.17%, 1.33%, and
4.19%, respectively. Regarding the computational complexity,
the running time and the number of parameters of the proposed
method are very low compared with GCN-based methods and
several CNN-based methods (e.g., SSRN and A2S2K), thus
implying that the proposed method is efficient.
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Fig. 13. Visualization of the five layers features (first 50 nodes) extracted by the proposed method with/without graph pooling–unpooling module on the
Indian Pines dataset. (a)–(e) From first to fifth layers with graph pooling–unpooling module. (f)–(j) From first to fifth layers without graph pooling–unpooling
module.

Fig. 9 depicts the classification maps generated by the
compared methods on the PaviaU dataset. The false-color
image and the ground-truth map are also presented. We can
observe that the classification map of the proposed approach
is the closest to the ground truth, showing fewer misclassi-
fications and less salt-and-pepper noise. This outcome is in
agreement with the classification results in Table VI. The
reason is that the proposed method can effectively exploit the
deep discriminative features to recognize different land covers.
On the contrary, the classification maps produced by the rest of
the methods show more misclassifications. For instance, due
to the use of fixed convolutional kernels, the classification map
of A2S2K yields more errors than the proposed method.

3) Results on the Salinas Dataset: Table VII reports the
classification results of the compared methods on the Salinas
dataset. It can be found that almost all the approaches achieve
better performance on the Salinas dataset than on the Indian
Pines and PaviaU datasets. This may be due to the fact that the
boundaries of the Salinas dataset are more regular, and large-
scale land covers are easier to be distinguished. Similar to the
classification results of the previous two datasets (Indian Pines
and PaviaU), the proposed method gets the best classification
results. Besides, it is worth to be remarked that the classifica-
tion performance of DGU is poor on the three datasets. The
reason could be that DGU builds the initial graph among pixels
in the image patch and cannot effectively extract the global
spectral–spatial features. Furthermore, in the case of similar
spectral signatures as for “Grapes untrained” (class = 8) and
“Vineyard untrained” (class = 15), the proposed method can
distinguish them well. In contrast, CNN-based methods cannot
do a good job because of their low ability to model large-scale
spatial topology. Moreover, it is worth to be noted that the
running time of the proposed method is the shortest. Although
it ranks second for the number of parameters, the difference
with respect to the first position is very limited (just 5.14k
parameters more than 3DCNN).

The classification map produced by the compared methods
is presented in Fig. 10. Again, the classification map of the
proposed method is less noisy, and we can observe fewer mis-
classifications with respect to the competitors, thus supporting
the superiority of the proposed approach.

Fig. 14. Visualization of the proposed method without/with offset module on
the three datasets. (a), (e), and (i), (b), (f), and (j), and (c), (g), and (k) Ground
truth, without offset module, and with offset module, respectively.

TABLE XI
EFFECTIVENESS OF THE GRAPH POOLING–UNPOOLING MODULE ON THE

INDIAN PINES DATASET

D. Impact of the Number of the Training Samples

The classification results under a small sample size are
essential in practical applications for HSI classification. There-
fore, we study the feature learning capabilities of the proposed
method under this condition. Hence, we selected five, ten,
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TABLE XII
EFFECTIVENESS OF THE DIFFERENT MODULES OF THE PROPOSED APPROACH ON THE THREE DATASETS. BOLD: BEST; UNDERLINE: SECOND BEST

15, 20, 25, and 30 training samples per category. The OAs
obtained by some representative methods on the three datasets
are reported in Fig. 11. We can observe that the proposed
method generally gets higher classification results than the
other competitors. Besides, when we have just five samples
per class, the proposed method gets slightly lower performance
than MSSGU on the PaviaU dataset. The reason may be that
our approach incorporates multiple superpixel information to
build deep GCNs, which leads to overfitting when dealing with
several irregular boundaries in the PaviaU dataset. In addition,
the classification performance of the CNN-based methods
(i.e., 2DCNN and 3DCNN) dramatically drops when the
sample size decreases. Finally, the classification accuracies of
DRGCN and MSSGU slightly decrease when the sample size
is reduced, thus demonstrating the powerful feature extraction
ability of our GCN-based method.

E. Impact of the Size of the Segmentation Scale

The segmentation scale, σ , can control the size of the
initial graph and can significantly impact the classification
performance. Thus, we studied its impact on our approach.
More specifically, we set σ from 100 to 500 with a step size
equal to 100. The performance of the proposed method with
different segmentation scales on the three datasets is shown in
Fig. 12. We can observe fewer fluctuations of the classification
accuracy on the Salinas dataset with respect to the Indian Pines
and PaviaU datasets when the segmentation scale increases.
The reason is related to the fact that the Salinas dataset
contains many large-scale land cover regions and regular
boundaries, and thus, it is insensitive to the segmentation scale.
In contrast, since the Indian Pines dataset consists of many
smaller land cover regions, lower values of the segmentation
scale parameter, σ , tend to properly map pixels in different
categories to different superpixels. Hence, the accuracy of the
proposed method decreases with the increase in σ . The PaviaU
dataset is also sensitive to changes in the segmentation scale
in a similar way as the Indian Pines dataset. In this article,
the segmentation scale, σ , is set to 100 for Indian Pines and
200 for PaviaU and Salinas.

F. Impact of the Network Depths and Hidden Kernel Sizes

The network depth and the hidden kernel size of GCN layers
in the proposed method are two important hyperparameters.
Deepening the network or increasing the number of hidden

kernels may not improve classification performance due to
the overfitting problem. Therefore, an appropriate network
depth with a suitable kernel size can enhance stability and
performance. Hence, we set the network depth (the number of
blocks containing gPools) to 1, 2, 3, 4, and 5, respectively. The
hidden kernel size of GCN layers is set to 20, 30, 40, 50, and
60, respectively. We utilize the grid search strategy to find the
optimal parameter. The OAs of the proposed method under
different hyperparameters on the Indian Pines, PaviaU, and
Salinas datasets are reported in Tables VIII–X, respectively.
We can observe that both the network depth and the hidden
kernel size affect classification performance. Besides, the best
performance is obtained with a relatively small network depth.
Finally, by fixing the network depth, we can observe an
improvement in the performance when increasing the hidden
kernel size until reaching a maximum. After that, the decrease
in performance is clear. As a result, for the Indian Pines
dataset, the network depth and the hidden kernel size of the
GCN layers are set to 3 and 50, respectively. For the PaviaU
dataset, the network depth and the hidden kernel size of the
GCN layers are set to 2 and 40, respectively. For the Salinas
dataset, the network depth and the hidden kernel size of the
GCN layers are set to 2 and 30, respectively.

G. Impact of the Graph Pooling–Unpooling Module

Oversmoothing is a common problem for GCN-based
methods when increasing the depth of GCNs. Graph
pooling–unpooling modules can alleviate this problem.
As shown in Fig. 13, we visualize the five layers features
(first 50 nodes) extracted by the proposed method with and
without the graph pooling–unpooling module on the Indian
Pines dataset. We can observe from the first row that the
proposed method with the graph pooling–unpooling module
can extract discriminative features when deepening the depth
of the network, and no smoothing occurred. On the con-
trary, the second row without the graph pooling–unpooling
module easily suffers from the oversmoothing problem even
with fewer network layers. Besides, Table XI reports the
performance of the proposed method with and without the
graph pooling–unpooling module; “w/o pool-unpool” stands
for without the graph pooling–unpooling module. It can be
observed that “w/o pool-unpool” achieves poor performance
on the Indian Pines dataset, and the classification accuracy
dramatically drops with the increase in the depth of GCN
layers.
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H. Impact of the Offset Module

In this section, we study the impact of the offset module.
More specifically, we visualize the output weights of the offset
module on the three datasets, as shown in Fig. 14. We can see
from the third column that the proposed method with the offset
module can clearly capture the discriminative spatial–spectral
information, which can emphasize the specific regions of HSIs,
enabling the network to make more informed classification
decisions. The regions extracted by the offset module are
closer to the ground truth (first column). Comparatively, the
second column without the offset module is not sensitive
to spatial–spectral features, especially in the PaviaU dataset
where just few features have been captured. Moreover, for the
Salinas dataset, the proposed method without the offset module
emphasizes all of the spectral–spatial features, not favoring any
network decision-making.

I. Ablation Study

The proposed method consists of three main components,
i.e., the spectral extraction, the multifeature adjacency matrix,
and the offset module. We conduct here an ablation study to
explore the contribution of these three main components on
the three datasets; “w/o-Spectral extraction,” “w/o-multifeature
adjacency matrix,” and “w/o-Offset module” will refer to
the reduced models via removing the spectral extraction,
the multifeature adjacency matrix (spatial and context-aware
information), and the offset module, respectively. Table XII
shows the overall accuracies of the abovementioned methods
on the three datasets, where the best and second-best values are
highlighted in bold and underlined, respectively. We can see
that the proposed method gets the best accuracy on the three
datasets, and the measured classification performance obtains
lower values when any part is removed. This analysis indicates
that each part makes an important contribution to improving
HSI classification performance. Besides, the “w/o-multifeature
adjacency matrix” achieves the lowest accuracy (considering
OA, AA, and Kappa) on the three datasets. Hence, the use of
spatial and contextual information is of crucial importance to
build a more accurate graph.

V. CONCLUSION

In this article, a superpixel feature learning via offset
graph U-Net is proposed for HSI classification. Instead of
just exploiting the spectral–spatial similarity to build the
initial graph, we consider multiple spectral–spatial information
among superpixels to build a more accurate graph, such as
spectral–spatial information and context-aware information
among neighboring nodes. In addition, an offset module is
proposed to pay more attention to the local spectral–spatial
information extracted by GCN layers. Thus, the proposed
method not only effectively extracts the deep discriminative
features but also extracts multiresolution features from HSIs
thanks to the use of the graph U-Net structure in the pro-
posed framework. The experimental results on three widely
used HSI datasets demonstrate that the proposed approach
outperforms other state-of-the-art methods in both accuracy
and efficiency. Future developments go toward the exploration

of different U-Net-based architectures, including state-of-the-
art mechanisms, such as attention.
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