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Abstract—The emerging research line of cross-modal learning
focuses on the issue of transferring feature representation manner
learned from limited multimodal data with labelings to the
testing phase with partial modalities. This is essentially common
and practical in the remote sensing community when only
modal-incomplete data are in users’ hands due to inevitable
imaging or access restrictions under large-scale observation
scenarios. However, most of the existing cross-modal learning
methods have been designed with exclusive reliance on label-
ing, which can be either limited or noisy due to their costly
production. To address this issue, we explore in this paper
the possibility to learn cross-modal feature representation in
an unsupervised fashion. By integrating the multimodal data
into a fully recombined matrix form, we propose 1) the use
of common subspace representation as the regression target
instead of conventionally adopted binary labels, and 2) the
orthogonality and manifold alignment regularization terms to
shrink the solution space whilst preserving the pairwise manifold
correlations. Through this manner, the modality-specific and
mutual latent representations in this common subspace as well
as their corresponding projections can be learned simultaneously
and their optimums can be efficiently reached through a nearly
one-step computation with the help of Eigen decomposition.
Finally, we show the superiority of our method through extensive
image classification experiments on three multimodal datasets
with four remotely sensed modalities involved (i.e., hyperspectral,
multispectral, synthetic aperture radar, and light detection and
ranging data). The code and dataset will be made freely available
at https://github.com/jingyao16/UCSL after a possible publication
to encourage the reproduction of our method and further use.

Index Terms—Cross-modal, unsupervised, multimodal, remote
sensing, common subspace, image classification, manifold align-
ment.

I. INTRODUCTION AND CONTRIBUTION

THE rapid advancement of machine learning methodology
in remote sensing (RS) has successfully enabled humans

with the ability to understand what they see and predict the
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unseen on the Earth. Among the multitude of applications
it has found in the past decades, the long-standing research
problem of pixel-level classification using RS images has
been gaining a surge of interest for its fundamental and
considerable potential in a wide range of downstream use
cases, such as object detection [1], [2], mineral exploration
[3]–[5], environmental monitoring [6], urban mapping [7],
disaster detection [8], [9], and so forth. Specifically, the aim
of RS image classification is to assign a physically meaningful
attribute to each pixel of a remotely sensed image according
to its ground object distributions. To achieve this goal, four
prominent procedures can be roughly summarized: front-side
data preparation/pre-processing, feature extraction/selection,
back-end classifier training/validating, and lastly the optional
post-processing on the inference result, the mid-range of which
becomes our main focus in this article.

As a common choice of the baseline along this line,
one can naturally feed mature classifiers, such as k-nearest
neighbors (k-NN), support vector machines [10], and deep
neural networks [11], with ready-made input data–after Earth
observations underwent necessary pre-processing–to obtain the
mapping result. In this context, the advent of hyperspectral
(HS) imaging has significantly expanded the boundaries of
RS capability in recognizing targets of interest at a ma-
terial level, owing to its simultaneous and dense spectral
sampling of radiance at contiguous ranges of wavelengths
[12]. Nevertheless, on one side, Spectral Variability and the
Curse of Dimensionality are two non-negligible issues that
accompany and bother the extensive use of HS images. For
years, researchers have devoted themselves to developing more
advanced machine learning tools by incorporating intrinsically
structural and statistical prior knowledge to alleviate the
redundancy underlying such high-dimensional formed data.
Concrete ideas include, but are not limited to, manifold
learning that seeks lower dimensional but meaningful repre-
sentation while maintaining higher-order topological structures
[13], representation learning that purses underlying sparsity
via multiple spatial-spectral features aggregation [14], kernel
learning by implicitly introducing nonlinearity representation
power [15], ensemble learning based on ensembling a set of
alternative classifiers that can guide the final decision towards
a more favorable trade-off between the bias and variance [16],
spatial information enhancement through edge preservation
and texture smoothing [17], [18], and multi-view learning [19].

On the other side, despite the technical superiority achieved
in sensing from HS data, it is still inevitable to meet an
interpretation performance bottleneck in satisfying the ever-

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3282951

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jocelyn Chanussot. Downloaded on June 06,2023 at 12:49:11 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/jingyao16/UCSL


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, XXXX, 2023 2

demanding industrial requirements for more precise, delicate,
and customized applications. As one of the possible solutions,
integrating multimodal RS data acquired from collaborated
observations has become an exceedingly useful adjunct in
pushing such a limit. Apart from the various modeling frame-
works, either conventional optimization or deep learning-based
ones [20], the efforts along this research line are generally
thought to be of two kinds, i.e., concatenation-based and
alignment-based models [21]. In specific, the first group of
methods usually focuses on either multimodal feature learning
based on input-level concatenation or modality-specific feature
learning for output-level concatenation. For example, Liao et
al. earlier proposed to generalize the handcrafted graph embed-
ding by fusing the spectral, spatial, and elevation information
contained in HS and height in light detection and ranging
(LiDAR) data [22]. Yokoya et al. made the first attempt at
fusing the spectral reflectance, spectral indexes, and morpho-
logical profiles for ensemble learning-based local climate zone
classification [23]. More recently, Hang et al. proposed to
append the coupled deep learning with a simultaneous feature
and decision-level fusion, which has also received considerable
attention [24], while Wu et al. introduced more advanced
cross-channel reconstruction module in coupled networks [25].
Admittedly, a common prerequisite behind the success of these
methods lies in the availability of multimodal observations for
both training and testing use, which substantially limits their
cross-modal learning ability in practical inference cases with
modal-incomplete data [26].

Although there have been noteworthy efforts paid to adjust
concatenation-based frameworks to fit the cross-modal feature
learning scenario, such as zero-padding [26] and generative
adversarial training [27], while both of their interpretability
and ability in explicitly characterizing underlying multimodal
structural information remains restricted. In comparison to
those strategies, the alignment-based methods typically assume
the alignability between multiple modalities and aim to learn
their corresponding projection manners that can separately
map multimodal input into a shared space. One popular way to
encode such property is through manifold representation tech-
niques. Tuia et al. first introduced semi-supervised manifold
alignment for multitemporal, multisource, and multiangular
very high resolution RS image classification without co-
registration requirement [28] and further developed a nonlinear
version with a guarantee for better domain generalization
capability by applying the kernel tricks [29]. The series work
by Hong et al. ably introduced the concept of subspace
learning and achieved remarkable performance improvement
in extensive multimodal and cross-modal learning applications,
the details of which will be presented in the next section
[21], [30]–[32]. It has also found places in other prominent
RS applications, various examples include visualization of
multi-band RS images [33], semi-supervised charting-based
multimodal RS object recognition and semantic segmentation
[34], and so on.

Throughout the above review, the vast majority of existing
multimodal or cross-modal feature learning approaches so far,
from either supervised or semi-supervised modeling perspec-
tives, has been designed with indispensable dependence on

label information. However, as is the case in our investigated
RS image classification task, the pixel-wise labeling itself
can be not only labor-costly for its field inspection and in-
lab annotation by specialists, but also vulnerable to noise
corruption caused by complex environmental factors [35].
What’s more, we found that these supervised feature extraction
methods mostly resort to a separately trained classifier to
obtain the final classification results instead of using those
learned representations that have been directly projected into
the target space. This could probably be explained by that su-
pervision in those commonly adopted one-hot encoded labels
inevitably miss the relation information besides the correct
category. To avoid such an over-constrained situation, we
therefore strive to develop an unsupervised cross-modal feature
extraction method that can get rid of using labeling as the
regression target. With more relaxed constraints, we propose
to implicitly set a latent representation that keeps the same
multimodal manifold structure as the original recombined
features, hoping to better reveal the underlying correlations
among samples that were drawn from multimodal RS images.
Our threefold contributions can be highlighted as follows:

1) A novel Unsupervised Common Subspace Learning
method, abbreviated as UCSL, is proposed to effectively
learn a discriminative representation without the need for
annotations that can still generalize well for the task of
cross-modal RS image classification.

2) With the guidance of our modified supervised graph,
the proposed UCSL model can be readily upgraded into
its supervised version, termed SCSL, which has shown
its further superior capability of cross-modal feature
learning on the basis of USCL in extensively conducted
RS image classification experiments.

3) We design an efficient algorithm that can resolve the
proposed models with nearly one-step computation by
resorting to the well-studied spectral decomposition,
which shows faster speed than conventional ones under
practical situations with limited training samples.

The remainder of this article is structured as follows. Section
II first introduces the background of related work and then
describes our proposed method. Section III presents the de-
scription of investigated datasets, implementation details about
training and testing, and experimental results and analysis.
Section IV gives a conclusion of this article and plausible
future outlooks.

II. BACKGROUND AND METHODOLOGY

In this section, we first briefly recall the basic preliminaries
of common subspace learning-based works for cross-modal RS
image classification. Then, we present our methods from math-
ematical problem formulation to its optimization, and lastly
some necessary analysis in regards to detailed computations.

As for the mathematical notations, we follow the commonly
adopted standard in signal processing as follows. Unless other-
wise stated, we use non-bold case letters to denote scalars and
bold upper case letters for matrices. Parenthesized superscript
denotes a specific modality. Subscripts using single and two
letters denote the indexes of a certain column and entry,
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Fig. 1. An illustration to clarify the workflow of our proposed UCSL/SCSL model.

respectively. ∥·∥2 is the vector ℓ2-norm, ∥·∥F is the Frobenius
norm, and tr(·) computes the trace of a matrix.

A. Recalling Cross-Modal Common Subspace Learning

Let Y ∈ RC×N denote the one-hot encoded labels in matrix
form, where C and N are the numbers of ground object
categories of interest and pixels within the investigated scene,
respectively. For the k-th modality RS image (k = 1, . . . ,K)
out of K considered modalities in total, let X(k) ∈ Rdk×N

denotes the unfolded matrix with dk channels. The task
of cross-modal image classification typically assumes that
{X(k),Y}Kk=1 are available in the training phase whereas only
a subset of {X(k)}Kk=1 can be used to predict labels in the
testing phase. The key point to solving this task, therefore, lies
in how to extract features by exploring common information
underlying multimodal training data.

The idea of subspace learning has been widely proved
effective in the past decades, especially for the processing of
high-dimensional RS data. Motivated by the joint framework
of subspace learning and classification for single-modal data
[36], one can readily derive its multimodal version as follows,

min
P,ΘΘ⊤=I

1

2
∥Ỹ −PΘX̃∥2F +Ω(P), (1)

where X̃ horizontally collects K-length zero-padded single-
modal observations [0; . . . ;X(k); . . . ;0], Ỹ = [Y; . . . ;Y] ∈
RC×KN , P and Θ are to-be-estimated projection matrices that
bridging the data space, latent common subspace, and label
space, respectively. The orthogonality assumption on Θ and
the regularization term on P which usually takes the form of
its Frobenius norm, i.e., Ω(P) = λ∥P∥2F, are basic constraints
that help to narrow the solution space.

To further introduce prior knowledge in the context of RS
image classification, enormous efforts have been made on the
basis of the baseline model in Eq. (1). Among them, the graph

structural information encoded by the manifold regularization
is undoubtedly one kind of panacea, which has been frequently
adopted by Hong et al. in their works as

1

2

N∑
i,j=1

∥(ΘX̃)i − (ΘX̃)j∥22Wij = tr(ΘX̃LX̃⊤Θ⊤), (2)

where L is called the graph Laplacian [37] derived from the
adjacency matrix W on graph. By doing so, the neighborhood
relationships on the manifold can be enforced as well in
the latent common subspace. Extensions to this idea include
substituting Ỹ and X̃ with their superpixel representations
[32], decomposing Θ by considering modality-shared and
modality-specific characteristics [21], and absorbing massive
unlabeled data in a semi-supervised fashion to exploit more
global information [31].

B. Problem Formulation

The above-mentioned series of works are all without ex-
ception built on a similar regression framework that tries
to model the relationship between X̃ and Ỹ. However, it
is worth noting that, the target space spanned by limited
one-hot encodings may not be a good choice since those
replicated binary labels are not only sparsely distributed but
also vulnerable to inevitable disturbance. On the other hand,
an interesting observation drawn from our reproductions shows
that retraining mature classifiers with extracted latent features
always outperforms those direct regression results (like the
term PΘX̃ in Eq. (1)). This strongly motivates us to rethink
the possibility of developing a novel cross-modal feature
extraction model without using labels.

Without relying on Ỹ, our main purpose now becomes to
learn Θ better only using {X(k)}Kk=1. Unlike conventional set-
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tings in CoSpace and its derivations, we propose to recombine
the K-modality training samples as

X̃ =

X
(1) . . . 0 X(1)

...
. . .

...
...

0 . . . X(K) X(K)

 ∈ R
∑K

k=1 dk×(K+1)N ,

(3)
which includes both multimodal and single-modal represen-
tations so as to enrich the data distribution in the original
high-dimensional space1. By introducing the modality-specific
projections Θk ∈ Rd×dk , we can then readily define their
concatenation Θ = [Θ1, . . . ,ΘK ] as the joint transformation
matrix that projects X̃ into a d-dimensional latent subspace.
Similarly, we assume the orthogonality of the target repre-
sentation Z ∈ Rd×(K+1)N corresponding to those projected
features to reduce the ill-posedness of our unsupervised re-
gression formulation as follows,

min
Θ,ZZ⊤=I

1

2
∥ΘX̃− Z∥2F +Φ(Θ) + Ψ(Z), (4)

in which we use 1/2 to simplify the following differentiation
deductions. Our main motivation in constructing the regular-
ization terms Φ(Θ) and Ψ(Z) are as follows. We first propose
to regularize the latent representation Z, or say, the regression
target, using the joint graph Laplacian L, to maintain the
intrinsic geometry structure of multimodal input X̃,

Ψ(Z) =
γ

2
tr(ZLZ⊤), (5)

where the detailed computation of L will be discussed in the
subsequent section. As for the projection matrix Θ, we on
one hand adopt the Frobenius norm to pursue small-valued
projection that has better generalization ability2. On the other
hand, as Fig. 1 demonstrates, we enforce the joint manifold
regularization on those projected features using the same graph
Laplacian matrix as above, hoping to double the the alignment
in latent subspace via coupling with the first regression term,

Φ(Θ) =
α

2
∥Θ∥2F +

β

2
tr(ΘX̃LX̃⊤Θ⊤), (6)

where α, β, and γ are positive parameters that weight the
relative importance of different priors. More experimental
results and analysis on the necessity of these regularization
terms can be found in the experiments section.

C. Optimization

The optimization problem of the proposed model in Eq.
(4) is generally nonconvex with respect to the to-be-estimated
variables. A direct solution is to resort to the alternating
direction method of multipliers (ADMM) algorithm by in-
troducing auxiliary variables to split the objective function
and the corresponding constraints as shown in [39]. However,

1Note that one can readily generalize such a recombination manner to
superpixel case by following [38], which can better exploit prior knowledge
on spatial structures and thus expect better classification performance.

2Instead, other kinds of prior can be encoded here, such as the sum of
the column- or row-wise ℓ2-norm that introduces feature selection function.
However, the resulting optimization loses the efficiency caused by its iterative
updating of auxiliary variable, which is not suggested in practice.
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Fig. 2. An example to illustrate the adopted unsupervised adjacency matrix
(WUnsup).

in this work, we propose to solve it more efficiently by the
following deductions.

We first consider the subproblem with respect to Θ by fixing
Z, the objective function of which takes the form of

JΘ = ∥ΘX̃− Z∥2F + α∥Θ∥2F + β tr(ΘX̃LX̃⊤Θ⊤). (7)

It is convex and thus we can readily set its first-order derivative
to zero, and get its closed-form solution as Θ̂ = ZX̃⊤H−1,
where H = X̃X̃⊤ + αI+ βX̃LX̃⊤.

Then we can substitute the above optimal Θ̂ into Eq. (4) to
rewrite our overall objective as a function with respect to Z,

JZ = tr
(
Θ̂X̃X̃⊤Θ̂⊤ − 2Θ̂X̃Z⊤ + ZZ⊤ + αΘ̂Θ̂⊤

+ βΘ̂X̃LX̃⊤Θ⊤ + γZLZ⊤)
= tr

(
Θ̂HΘ̂⊤ − 2Θ̂X̃Z⊤ + Z(I+ γL)Z⊤)

= tr
(
Z(−X̃⊤H−1X̃+ I+ γL)Z⊤).

(8)

According to [40], the above optimization problem under
the orthogonality constraint follows the form of spectral
clustering, the solution Ẑ to which can be readily given
by Eigen decomposition. Note that our algorithm can still
provide comparable one-step solutions by eliminating any of
the regularization terms.

D. Method Analysis

1) Unsupervised/Supervised Graph Construction: Like re-
lated works do, the classification performance largely depends
on the construction of the L. Ideally, an accurate estimation
of the graph adjacency matrix W is beneficial for capturing
global manifold structure and thus expected to result in better
feature extraction. However, to avoid the burdensome whole
graph computation and its vulnerability to complex noise,
many recent efforts have verified the effectiveness of using
locally computed alternatives [41], where only a certain size
of neighbors to each sample, denoted as N (·), are taken into
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Fig. 3. An example to illustrate the adopted supervised adjacency matrix
(WSuper).

consideration. By following this rule, we first propose our
unsupervised version as follows,

(WUnsup
k,k )ij =

{
rσ((X̃k)i, (X̃k)j), if (X̃k)i ∈ N ((X̃k)j),

0, otherwise,
(9)

in which rσ(a, b) = exp(−∥a − b∥22/2σ2) is the so-called
radial basis function kernel with parameter σ controlling the
width. Considering that more information is contained in the
recombined multimodal representations, we can therefore set
the intra-modality graph as that computed by X̃K+1, i.e.,
WUnsup

k1,k2
= WUnsup

K+1,K+1, when k1 ̸= k2, hoping to provide
a more reliable guidance for the joint manifold regularization.

Note that although our regression model is in no need of
the hard labeled information, we can still integrate it into
the construction of a supervised version, i.e., (WSuper

k,k )ij =

rσ((X̃k)i, (X̃k)j)/Nc, if (X̃k)i ∈ N ((X̃k)j), and they belong
to the same c-th class, which has Nc samples in total. In this
case, we can also set (WSuper

k1,k2
)ij = 1/Nc, if (X̃k1)i and

(X̃k2
)j shares the same attribute, and 0 otherwise, for k1 ̸= k2,

by following the discriminative graph structure setting in [21].
Fig. 2 and Fig. 3 show examples of the two cases respectively.

With the above-mentioned adjacency matrix W in hand,
constructed either in an unsupervised or supervised fashion, we
can then compute the degree matrix D by Dii =

∑
j Wij ,

and obtain the normalized graph Laplacian matrix as L =
D− 1

2 (D−W)D− 1
2 for the final use, which is expected to be

well-equipped to handle multimodal features with both regular
and irregular graph structures [37].

2) Spectral Decomposition: Generally, the solution that
minimizes Eq. (8) can be provided by either the left or right
eigenvectors corresponding to the d smallest eigenvalues in
Eigen decomposition of M = −X̃⊤H−1X̃+I+γL. Based on
the above definitions, we can easily determine the symmetry
of M by the fact that H−1 = (H−1)⊤. However, to avoid
possible numerical instabilities caused by computing the inver-
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Fig. 4. Run time comparison of the conventional Eigen decomposition and
the adopted spectral decomposition on the three investigated datasets.

sion of H in practice, we propose to use eig((M+M⊤)/2)
instead. Note that the Eigen decomposition of such a real
symmetric matrix is also termed as spectral decomposition,
by which the orthogonal eigenvectors can be generated more
stably and efficiently than eig(M).

3) Cross-Modal Inference: As aforementioned, our model
can be resolved by nearly one-step Eigen decomposition, and
obtain the optimal projection by Θ̂ = ẐX̃⊤H−1. To guarantee
a fair comparison without augmenting the training set, we
feed the off-the-shelf classifier such as k-NN with Θ̂kX

(k)

and finally use it for inference on the k-th modality testing
data. Fig. 1 gives a whole picture of the proposed cross-modal
feature learning framework for RS image classification.

4) Computational Efficiency: Besides the normal matrix
multiplications in solving our proposed model, it essentially
involves the Eigen decomposition of a (K+1)N -by-(K+1)N
matrix, which commonly takes a complexity of O(N3). How-
ever, the efficiency of our algorithm can be guaranteed from
the perspectives of numerical computation and application
scenario. First, adopting the spectral decomposition as stated
in subsection 2 can evidently speed up the run time in our
practice (nearly 7x when compared with eig(M) as shown
in Fig. 4) by virtue of the spectral theorem [42]. Second, the
N here only depicts the size of train set, which is commonly
much more less than that of test set. Considering the fact
that the inference computational cost of our model behaves
no differences with those of the same type, it is reasonable
to believe that our model can provide a better alternative
than conventional common subspace learning methods for
addressing the classification of large-scaled image.

III. EXPERIMENTS AND DISCUSSION

In this section, we first provide a brief description of the
three investigated multimodal RS image datasets, which are
all publicly available from the websites. Then we describe the
compared methods and the necessary implementation details
in our experiments. At last, we show the parameter sensitivity
analysis on the first dataset and analyze the extensive compar-
ison results on all three datasets.

A. Dataset Description
Fig. 5 gives a whole picture of all three datasets with

illustrations of their train and test set split. More specifically,
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Fig. 5. Illustration of the three investigated multimodal RS image datasets and the train/test set split.

TABLE I
SUMMARY OF THE INVESTIGATED HOUSTON2013 HS-MS DATASET,

INCLUDING THE CLASS NAMES AND THE CORRESPONDING NUMBERS OF
TRAIN AND TEST SAMPLES.

Class No. Class Name Train Test
1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059

10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473
– Total 2832 12197

1) Houston2013 HS-MS Dataset: The HS data in the first
dataset is available from the 2013 IEEE Geoscience and
Remote Sensing Society (GRSS) Data Fusion Contest (DFC)3.
It consists of 349×1905 pixels captured by an ITRES CASI-
1500 imaging sensor over the University of Houston campus,
Texas, USA, and its surrounding urban area. We follow the
experimental settings in [21] to generate a homogeneous HS-
MS dataset. Specifically, the spectral downsampling using
the spectral response functions of the Sentinel-2 sensor was
performed to obtain the MS image with 8 spectral bands
and a ground sampling distance (GSD) of 2.5 m. The spatial
downsampling using the bilinear interpolation was performed
to obtain the HS image with 144 bands, covering the spectral
range from 0.38 to 1.05 µm, and a GSD of 10 m. There are 15
ground objects of interest in this scene as the detailed statistics
of class-wise ground truth reference are provided in Table I.

3http://www.classic.grss-ieee.org/community/technical-committees/
data-fusion/2013-ieee-grss-data-fusion-contest/

TABLE II
SUMMARY OF THE INVESTIGATED AUGSBURG HS-SAR-LIDAR DATASET,

INCLUDING THE CLASS NAMES AND THE CORRESPONDING NUMBERS OF
TRAIN AND TEST SAMPLES.

Class No. Class Name Train Test
1 Forest 146 13361
2 Residential Area 264 30065
3 Industrial Area 21 3830
4 Low Plants 248 26609
5 Allotment 52 523
6 Commercial Area 7 1638
7 Water 23 1507
– Total 761 77533

2) Augsburg HS-SAR-LiDAR Dataset: The second dataset
comprises three-modality RS data, i.e., a spaceborne HS
image, a spaceborne PolSAR image, and an airborne LiDAR
image [43]. They were acquired by the HySpex sensor, the
Sentinel-1 sensor, and the DLR 3K camera system [44]
respectively in May 2018, covering the same area of the city
of Augsburg, Germany. The spatial resolution of them was
downsampled to the same 30 m by applying bilinear interpo-
lation, resulting in 332×485 pixels with 180 bands ranging
from 0.4 to 2.5 µm HS image, 1-channel LiDAR image, and
4-channel SAR image (VV intensity, VH intensity, the real
part and the imaginary part of the off-diagonal element of the
2×2 polarimetric SAR covariance matrix [45]), respectively.
The details of the ground truth reference generated by the
OpenStreetMap are summarized in Table II.

3) Local Climate Zones (LCZs) Hong Kong MS-SAR
Dataset: The MS data of this dataset was provided by the
2017 IEEE GRSS DFC4. It consists of 10 spectral bands at a
GSD of 100 m. By following Hong et al. [26], we select the
city of Hong Kong, which comprises MS and SAR images
that were acquired by the Sentinel-2 and Sentinel-1 sensors
respectively. The SAR image pre-processed in the same way
as the Augsburg dataset was further downsampled to the same
size as the MS image, i.e., 529×528 pixels. In Table III, we

4http://www.classic.grss-ieee.org/2017-ieee-grss-data-fusion-contest/
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Fig. 6. Parameter sensitivity analysis in terms of the OA by fixing (a) α, (b) β, and (c) γ, respectively.

TABLE III
SUMMARY OF THE INVESTIGATED LCZ HONG KONG MS-SAR DATASET,
INCLUDING THE CLASS NAMES AND THE CORRESPONDING NUMBERS OF

TRAIN AND TEST SAMPLES.

Class No. Class Name Train Test
1 Compact High-Rise 32 599
2 Compact Mid-Rise 32 147
3 Compact Low-Rise 30 296
4 Open High-Rise 34 639
5 Open Mid-Rise 31 95
6 Open Low-Rise 30 90
7 Large Low-Rise 30 107
8 Heavy Industry 31 188
9 Dense Trees 30 1586
10 Scattered Trees 30 510
11 Bush and Scrub 30 661
12 Low Plants 30 955
13 Water 32 2571
– Total 402 8444

provide details for its ground truth information as well as the
train and test set.

B. Implementation Details

1) Training and Testing Set Split: To split datasets without
benchmark training and testing sets, like the LCZs Hong Kong
MS-SAR dataset used in this work, we design a clear working
flow as follows. We first conduct superpixel segmentation on
the investigated scene. By setting the number of superpixels
relatively large, these segments tend to share the same attribute
within each. Then, the training set can be iteratively augmented
by randomly selecting superpixels until a preset threshold of
size is reached, which is 30 for each class in our case. The
remaining ground truth is naturally for test or validation use.

2) Evaluation Metrics: Besides four metrics that are widely
used for the quantitative classification assessment, i.e., class-
wise accuracy (CA), overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (κ), we introduce the standard
deviation of CAs (σ) in our comparison, hoping to reflect how
CAs are spread out around AA, particularly for datasets with
an imbalanced class distribution. Also, the run time of major
computations are provided to offer more instructive guideline.

3) Compared Methods: To validate the effectiveness and
generalization ability of our proposed algorithm, we select
the following methods by ensuring diversity for comparison.

TABLE IV
QUANTITATIVE RESULTS OF ABLATION STUDY ON THREE ADOPTED
REGULARIZATIONS, I.E., FROBENIUS NORM ON Θ (ΦF ), MANIFOLD

REGULARIZATIONS ON Θ (ΦMR) AND Z (ΨMR), RESPECTIVELY.

Method UCSL-α UCSL-β UCSL-γ UCSL
ΦF ✗ ✓ ✓ ✓
ΦMR ✓ ✗ ✓ ✓
ΨMR ✓ ✓ ✗ ✓

OA (%) 77.01 78.01 78.23 79.91
AA (%) 80.10 81.14 80.98 82.29

κ 0.7507 0.7617 0.7641 0.7821

Besides the baseline that directly trains and tests using single-
modality data, we reproduce the results of joint dimensionality
reduction methods based on principal components analysis
[46], unsupervised manifold alignment [33], and supervised
manifold alignment [47], which will be abbreviated as JPCA,
USMA, and SMA, respectively, basic common subspace
learning framework ℓ2-CoSpace5 [30] and that with feature
selection ℓ1-CoSpace [48], shared and specific feature learn-
ing model S2FL6 [21], multimodal deep learning framework
for remote sensing images MDLRS7 that adopting the fully
connected architecture, and lastly ours using unsupervised and
supervised adjacency matrix as UCSL and SCSL. Note that all
the compared methods are pixel-based ones without explicit
spatial information mining. Most of our experiments were
carried out on the Windows platform using MATLAB R2019a
on CPU expect for the MDLRS, which was reproduced under
the PyTorch framework on GPU.

C. Results and Analysis on Houston2013 HS-MS Dataset

The first dataset has been widely used. Considering that HS
data tend to generate more favorable classification results, we
conduct cross-modal inference with MS data.

1) Parameter Sensitivity Analysis: Once the graph is con-
structed, the quality of the learned features and the perfor-
mance of our model mainly depend on the parameter settings.
According to Eqs. (4) to (5), three regularization parameters
α, β, and γ need to be analyzed. Taking UCSL model as
an example, we roughly tuned these parameters via grid
search on interval of {10−3, 10−2, 10−1, 100, 101, 102, 103}.

5https://github.com/danfenghong/IEEE TGRS CoSpace
6https://github.com/danfenghong/ISPRS S2FL
7thttps://github.com/danfenghong/IEEE TGRS MDLRS
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TABLE V
QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON HOUSTON2013 HS-MS DATASET. THE VALUES OF ACCURACY

AND TRAIN TIME ARE SHOWN IN PERCENTAGES AND SECONDS, RESPECTIVELY. THE BEST RESULTS ARE SHOWN IN BOLD.

Method Baseline JPCA USMA SMA ℓ2-CoSpace ℓ1-CoSpace S2FL MDLRS UCSL SCSL
Class 1 82.53 82.43 81.29 79.87 82.53 80.53 82.81 82.81 81.96 80.91
Class 2 82.05 83.08 82.71 83.46 82.89 82.89 82.61 81.86 81.95 81.58
Class 3 98.61 99.41 99.80 99.60 99.80 99.80 99.80 99.80 99.80 100.00
Class 4 91.29 90.81 88.35 83.90 86.08 90.91 87.78 98.77 92.99 90.34
Class 5 96.50 96.69 97.44 97.44 98.67 98.01 98.48 98.01 98.30 98.30
Class 6 98.60 99.30 99.30 100.00 99.30 98.60 95.10 95.10 99.30 95.10
Class 7 71.55 75.75 81.16 71.27 88.81 82.84 86.66 88.43 74.25 76.77
Class 8 34.00 35.23 39.41 41.41 41.50 61.25 42.83 93.22 56.13 66.67
Class 9 63.64 66.01 63.93 66.67 76.77 68.56 78.66 78.94 66.67 69.31

Class 10 43.92 42.57 42.47 59.75 52.90 51.74 50.58 57.34 84.85 83.11
Class 11 63.85 67.36 65.65 65.56 73.24 69.26 73.15 71.73 72.96 68.88
Class 12 46.40 53.60 49.47 67.24 75.60 69.93 76.56 74.54 70.70 76.85
Class 13 52.28 56.84 56.14 55.44 64.91 59.30 65.61 69.82 59.30 57.54
Class 14 96.76 97.17 96.36 97.98 97.98 98.38 98.38 97.98 98.79 99.19
Class 15 98.52 98.52 96.41 96.83 97.46 96.19 97.46 97.25 96.41 96.83

OA↑ 70.74 72.44 72.21 74.31 78.26 77.81 78.33 79.40 79.91 80.89
AA↑ 74.70 76.32 75.99 77.76 81.23 80.55 81.10 82.11 82.29 82.76
κ↑ 0.6857 0.7039 0.6993 0.7212 0.7644 0.7593 0.7580 0.7770 0.7821 0.7926
σ↓ 22.71 21.72 21.49 18.47 17.66 16.30 17.36 13.10 15.09 13.52

Time↓ 0.13 0.28 0.77 0.62 29.81 30.73 31.08 282.69 29.64 29.57

Legend Health Grass Stressed Grass Synthetic Grass Tree Soil Water Residential Commercial Road Highway Railway Parking Lot! Parking Lot" Tennis Court Running Track Undefined

Ground Truth Baseline

JPCA SMAUSMA

False-Color Image

UCSL SCSL

S"FL-CoSpace -CoSpace

MDLRS

Fig. 7. Illustration of the false-color image, label ground truth, and classification maps obtained by compared methods on Houston2013 HS-MS dataset.

To better visualize the performance sensitivity (in terms of
OA) to these parameters, we draw surface plots in Fig. 6 by
fixing α, β, γ to the optimal combination as (10−3, 10−2, 100)
while varying the other two variables, respectively. From the
subfigures, we can basically conclude that too-small values
of these parameters, corresponding to inactive regularizations,
could even deteriorate the discriminative ability of the original
data. In general, although the classification performance can
be affected to some extent, it can still be kept at an acceptable
level that is greater than 75% with a moderately set α.

2) Ablation Study on Regularizations: By following the pa-
rameter searching strategy mentioned above, we then conduct
ablation experiments to validate the effectiveness of the three
adopted regularizations. Although substituting the first Frobe-
nius norm of projection matrix with more complicate norms
like group sparsity term may bring further performance gain,
we find it inevitably introduce more variables and iterative
time-consuming optimization, thus limiting its feasibility in
practical application. Hence we consider our UCSL models’s

variants by removing these terms weighted by α, β, and γ,
respectively. Through the results summarized in Table IV, the
first Frobenius norm term affects the performance the most,
while the single use of other two manifold regularizations can
result in comparably OA and AA that around 78% and 80%,
respectively. The best result is achieved by employing all of
these three terms.

3) Comparison Experiments: We conduct more compari-
son experiments to verify the effectiveness of the proposed
method. In the following, we report the performance of all
compared methods by exhaustive parameter tuning or follow-
ing suggestions in related literature. The quantitative results
are summarized in Table V with the best ones emphasized
in bold. From the table, we can first observe that a large
proportion of classes in this scene can be well separated,
which is probably due to the high quality of airborne imaging
products and labeling. The baseline using single MS data
can achieve the best accuracy on classifying running track
as JPCA does, while the latter further improves the OA by
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TABLE VI
QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON AUGSBURG HS-SAR-LIDAR DATASET. THE VALUES OF

ACCURACY AND TRAIN TIME ARE SHOWN IN PERCENTAGES AND SECONDS, RESPECTIVELY. THE BEST RESULTS ARE SHOWN IN BOLD.

Method Baseline JPCA USMA SMA ℓ2-CoSpace ℓ1-CoSpace S2FL MDLRS UCSL SCSL
Class 1 63.81 74.04 77.22 75.61 77.29 76.87 76.91 64.12 76.42 76.30
Class 2 72.88 81.79 81.96 82.18 83.81 83.52 84.11 82.79 84.44 84.41
Class 3 13.08 16.58 16.66 14.36 14.28 15.74 13.05 19.53 15.90 16.27
Class 4 71.57 80.69 82.58 83.90 83.10 82.91 83.39 65.44 84.55 84.72
Class 5 11.28 14.91 16.44 24.67 25.05 24.86 26.00 18.55 31.17 35.18
Class 6 7.51 10.93 12.45 6.84 8.00 7.81 5.01 4.27 7.26 6.29
Class 7 7.56 9.22 12.08 13.14 15.79 16.26 16.99 12.48 22.96 22.50

OA↑ 64.84 73.50 74.86 74.97 75.69 75.51 75.74 67.12 76.52 76.57
AA↑ 35.38 41.17 42.77 42.96 43.90 43.99 43.64 38.24 46.10 46.52
κ↑ 0.5078 0.6240 0.6446 0.6454 0.6548 0.6531 0.6551 0.5264 0.6660 0.6665
σ↓ 32.02 35.41 35.46 35.65 35.49 35.12 36.00 31.56 34.27 34.21

Time↓ 0.12 0.24 0.39 0.35 7.83 7.97 8.45 134.30 1.62 1.49

Ground Truth Baseline

UCSL SCSL

JPCA SMAUSMA

S!FLl!-CoSpace l"-CoSpace

False-Color Image

Legend Low Plants WaterForest Residential Area Allotment UndefinedIndustrial Area Commercial Area

MDLRS

Fig. 8. Illustration of the false-color image, label ground truth, and classification maps obtained by compared methods on Augsburg HS-SAR-LiDAR dataset.

1.7%. An evident performance gain appears from the USMA
to SMA (about 2% in OA), showing that supervised graph
construction is more suitable in this dataset, which is consis-
tent with our cases. CoSpace-based models largely increase
the performance, reaching around 78% OA with 6 best CAs,
in which the basic ℓ2-regularized model and S2FL tend to
behave with a strong generalization ability and share similar
performances that are second to ours. It is noteworthy that our
UCSL and SCSL can not only lead in all classic metrics as
OA, AA, and κ, but also obtain the lowest σ, demonstrating
their superior and unbiased feature extraction ability. As for
the run time, those primitive methods (JPCA, USMA, SMA)
are much scalable than more advanced ones. Our models still
can be more efficient than CoSpace-families, while MDLRS
costs the most because both the size and channel number of
training data are much larger than the other two datasets.

Fig. 7 shows more visual evidence for qualitative assess-
ment, especially for those compared methods that are hard
to distinguish their differences quantitatively. The first thing
that catches our eye is an irregularly shaped area at the
bottom part. The classification mapping in this area exhibits
various patterns among the investigated methods. According
to the legend, the first three methods simultaneously detect the
extensive existence of Water class, which does not quite match
with actuality. While SMA mainly differs from CoSpace-based
methods in discovering green spaces beside the road, despite
their common failure in recognizing the rectangular buildings

that belong to the Commercial class. However, the patterns of
the road, green area, and buildings in our results are faithful
to the real distributions with rich content.

D. Results and Analysis on Augsburg HS-SAR-LiDAR Dataset

In this dataset, we use SAR data for cross-modal testing
since LiDAR has only one channel. We summarize the quan-
titative results and visualized classification maps in Table VI
and Fig. 8, respectively. The number of categories is less than
that of the former dataset, while using single SAR data for
inference is more challenging, as the baseline only gives CAs
around 10% for four classes (Industrial Area, Allotment, Com-
mercial Area, and Water) according to the table. However, all
the other joint feature learning methods can bring significant
performance improvements of around 10% in terms of OA.
In specific, JPCA and USMA dramatically increase the OA to
around 74%, which is basically at the same level as that of
SMA. ℓ2-CoSpace, ℓ1-CoSpace, and S2FL perform closely to
each other in this dataset, as their OAs and AAs can reach
the lines of 75% and 43%, respectively. Without any doubt,
the best results in OA, AA, and κ are achieved by our SCSL,
which is barely ahead of our UCSL. Although the baseline
owns the lowest σ, the AA improvements brought by our
methods deserve more attention since they indeed raise the
performance on hard classes (Allotment and Water) to a great
extent. From the figure, we can also verify the fact that our
methods can give better estimates of the three major classes,
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TABLE VII
QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON LCZ HONG KONG MS-SAR DATASET. THE VALUES OF

ACCURACY AND TRAIN TIME ARE SHOWN IN PERCENTAGES AND SECONDS, RESPECTIVELY. THE BEST RESULTS ARE SHOWN IN BOLD.

Method Baseline JPCA USMA SMA ℓ2-CoSpace ℓ1-CoSpace S2FL MDLRS UCSL SCSL
Class 1 13.19 22.54 19.37 13.86 18.03 15.19 19.53 15.86 18.86 24.21
Class 2 29.25 32.65 31.29 31.29 34.01 34.01 34.69 13.61 36.73 34.69
Class 3 20.95 21.62 22.97 20.27 19.26 18.58 22.30 8.11 21.62 22.64
Class 4 12.21 11.42 14.08 11.58 13.46 12.99 11.74 32.86 14.40 13.30
Class 5 4.21 8.42 9.47 6.32 7.37 7.37 7.37 7.37 9.47 8.42
Class 6 14.44 14.44 21.11 17.78 15.56 16.67 16.67 3.33 20.00 22.22
Class 7 10.28 9.35 10.28 14.02 10.28 9.35 11.21 16.82 14.02 12.15
Class 8 20.74 19.68 17.55 22.34 24.47 18.09 23.40 8.51 26.06 23.94
Class 9 14.50 13.11 13.81 14.56 15.70 15.83 15.57 0.32 17.09 16.08

Class 10 20.78 22.75 19.02 21.37 24.71 21.76 22.16 26.47 21.57 22.75
Class 11 26.02 23.90 24.96 26.48 25.87 23.00 25.42 65.20 24.05 25.42
Class 12 19.58 20.84 19.48 20.84 21.57 20.63 21.26 0.00 20.73 20.42
Class 13 94.05 93.66 94.36 93.93 93.47 94.05 93.54 96.03 94.40 94.28

OA↑ 40.76 41.18 41.27 41.11 41.85 41.14 41.72 40.66 42.39 42.54
AA↑ 23.09 24.18 24.44 24.20 24.90 23.65 24.99 22.65 26.08 26.19
κ↑ 0.3142 0.3188 0.3199 0.3175 0.3259 0.3178 0.3250 0.3137 0.3318 0.3336
σ↓ 22.35 21.97 21.84 21.95 21.79 22.17 21.77 28.14 21.57 21.55

Time↓ 0.10 0.21 0.30 0.26 3.67 0.54 0.65 43.52 0.25 0.21

Ground Truth Baseline

UCSL SCSL

JPCA SMAUSMA

S!FL-CoSpace -CoSpace

False-Color Image
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Fig. 9. Illustration of the false-color image, label ground truth, and classification maps obtained by compared methods on LCZ Hong Kong MS-SAR dataset.

i.e., Forest, Residential Area, and Low Plants, which confirms
the good generalization ability of our model for heterogeneous
cross-modal learning.

E. Results and Analysis on LCZ Hong Kong MS-SAR Dataset
The last dataset is much more challenging. Nearly all classes

except for the Water class can be well recognized. We also
select SAR as the testing modality to investigate how much it
can benefit from joint feature learning with MS-SAR training
data. Based on the results shown in Table VII and Fig. 9,
a similar tendency can be observed in this dataset as that

appeared in the former ones. All the OAs of existing cross-
modal learning methods can not surpass the line of 42%
whereas our SCSL and USCL are able to win the first and
second places respectively, with a relatively large margin. It is
also worth noting that our UCSL obtains the best CAs in more
than half the classes (7 out of 13). Among the competitors,
it is the method of ℓ2-CoSpace behaves the best, as can be
shown from the figure. Another interesting observation lies in
that there does exist the Shenzhen Bay Bridge in the zoomed-in
window though we can hardly draw any clues from the false-
color image. However, the investigated methods can still detect
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it more or less, which also illustrates the importance of pushing
the limits of cross-modal learning from partial modality. The
run time of our models is much more competitive in the last
two datasets, showing its promising potential in dealing with
limited training samples under practical situations.

IV. CONCLUSION AND OUTLOOK

In this paper we aim at alleviate the need of costly pixel-
wise labeling and propose a fully unsupervised cross-modal
feature learning method, UCSL, and its supervised version
SCSL, for the task of RS image classification. By implicitly
introducing the to-be-learned representations in the latent
common subspace, we can directly learn the cross-modal
projections from the compactly recombined multimodal data
without the need of label target. Under the regularizations
on orthogonality and manifold structural priors, the proposed
models can be ably transformed into a trace norm optimization
problem that can be efficiently resolved by Eigen decomposi-
tion. Extensive experiments conducted on parameter sensitivity
and comparisons with relevant methods show the stability and
constant superiority of proposed methods.

We will put our future research interest along the following
two lines. First, there still leaves room to further improve
the algorithm efficiency by resorting to mathematical and
numerical approximation manners [49]. Second, we will also
endeavor to integrate the unsupervised feature learning and
deep learning techniques for the RS image classification.
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