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Abstract—Several methods based on Total Variation (TV)
have been proposed for Hyperspectral Image (HSI) denoising.
However, the TV terms of these methods just use various l1
norms and penalize image gradient magnitudes, having a negative
influence on the preprocessing of HSI denoising and further
HSI classification task. In this paper, a novel l0 Total Variation
(l0TV) is first introduced and analyzed for the HSI noise removal
framework to preserve more information for classification. We
propose a novel Tensor low-rank constraint and l0 Total Variation
(TLR-l0TV) model in this paper. l0TV directly controls the
number of non-zero gradients and focuses on recovering the
sharp image edges. The spectral-spatial information among all
bands is exploited uniformly for removing mixed noise, which
facilitates the subsequent classification after denoising. Including
the Weighted Sum of Weighted Nuclear Norm (WSWNN) and the
Weighted Sum of Weighted Tensor Nuclear Norm (WSWTNN),
we propose two TLR-l0TV-based algorithms, namely WSWNN-
l0TV and WSWTNN-l0TV. The Alternating Direction Method of
Multipliers (ADMM) and the Augmented Lagrange Multiplier
(ALM) are employed to solve the l0TV model and TLR-l0TV
model, respectively. In both simulated and real data, the proposed
models achieve superior performances in mixed noise removal of
HSI. Especially, HSI classification accuracy is improved more
effectively after denoising by the proposed TLR-l0TV method.

keywords—Hyperspectral Image (HSI), mixed noise, tensor LR
constraint, l0TV, ADMM, ALM.

I. INTRODUCTION

Due to the spectral diversity of information, hyperspectral
images (HSIs) are now widely used in various applications
such as precision agriculture, monitoring of the environment,
defense and security, urban planning or planetary and space
exploration [1]–[3]. Unfortunately, because of some different
noise sources like sensor systems and external environment,
the observed HSIs are corrupted by mixed noise, including
Gaussian noise, salt and pepper noise, stripes or dead-line
noise. This degrades the quality of hyperspectral images and
further limits the precision of subsequent HSI applications,
including classification [4], [5], unmixing [6], [7], feature
learning [8], [9] and target detection [10], [11]. Therefore,
HSI denoising appears as an essential preprocessing step to
improve image quality. For HSI denoising, it is critical to make
good use of image prior knowledge, containing spatial spectral
smoothness and low-rank property.
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To exploit spatial and spectral smoothness, image denoising
models based on total variation have been designed. The TV
model was firstly applied for gray-level image denoising [12],
[13] and color image denoising [14], [15]. Strong et al. [12]
developed a spatially adaptive TV (SATV) minimization to
solve the gray-level image denoising problem and Blomgren
et al. [14] proposed a new TV for vector-valued data to
restore color images. Different from these kinds of images,
a hyperspectral image is a 3-D tensor data and has more
abundant spectral bands. Yuan et al. [16] employed a spectral-
spatial adaptive TV (SSAHTV) model where both the spectral
and the spatial noise differences are considered for HSI denois-
ing. However, SSAHTV only removes Gaussian noise while
failing to retain important image details. Chang et al. [17]
proposed an anisotropic spectral-spatial total variation regu-
larization to enhance the smoothness along three dimensions,
but this TV model only removed stripes and random noise.
For efficient mixed noise removal, Aggarwal and Majumdar
[18] utilized 2-D TV along the spatial dimension and 1-D TV
along the spectral dimension and proposed a spatio-spectral
total variation (SSTV) model. But the denoised results by
SSTV have artifacts since SSTV just focuses on local spatio-
spectral differences. These TV methods capture local spatial
and spectral information but ignore another important HSI
typical characteristic, namely the assumption of Low Rank
(LR) property.

As another powerful technique for image processing, LR-
based methods have shown great potential in the field of HSI
denoising. Each spectral band is rearranged into a vector and
a clean 3-D HSI data can be treated as a 2-D matrix [19]–[23].
Due to the spectral correlation of HSI, this matrix can be repre-
sented by a linear combination of finite pure endmembers and
hence has the LR property. Zhang et al. [19] formulated the
HSI denoising problem into an LR Matrix Recovery (LRMR)
framework and applied the ”Go Decomposition” algorithm
to solve the LRMR problem. Xie et al. [20] introduced a
non-LR model, i.e., weighted Schatten p-norm to get a better
approximation of the original LR assumption. Instead of a
traditional nuclear norm, Chen et al. [21] used a tighter LR
approximation and presented a nonconvex LRMR model. Fan
et al. [22] employed a bi-nuclear quasi-norm to constrain the
LR characteristic of HSI and proposed a bilinear LR matrix
factorization (BLRMF) HSI denoising method. Moreover, the
deep learning-based methods have revealed in handling HSI
restoration problems [24]–[26]. Lin et al. [24] combined a
convolutional neural network with the non-negative matrix fac-
torization framework. However, this model mainly rearranges
a 3-D HSI tensor into a 2-D matrix, which unfortunately leads
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to the loss of the inherent tensor structure information. Yuan
et al. [25] employed an HSI Spatial-Spectral Deep Residual
Convolutional Neural Network (HSID-CNN) to build a non-
linear end-to-end mapping between the noisy and denoised
images. Zhang et al. [26] proposed a spatial-spectral gradient
network (SSGN), which simultaneously extracted the structure
directionality of sparse noise and obtained the additional
spectral information of HSIs. Consequently, many tensor low-
rank (TLR) based methods have been proposed. Renard et
al. [27] proposed a LR Tensor Approximation (LRTA) model
by using Tucker decomposition and Liu et al. [28] proposed
a Parallel Factor Analysis (PARAFAC) decomposition model.
Inspired by Tensor Nuclear Norm (TNN) based Tensor Robust
Principal Component Analysis (TRPCA) [29], Fan et al. [30]
reformulated the HSI denoising task as an LR Tensor Recovery
(LRTR) problem. Xue et al. [31] proposed a non-convex
tensor rank minimization (NTRM) model by using the non-
convex logarithmic surrogate function of the singular values
to approximate the tensor rank. To implicitly describe the
intrinsic prior, Xue et al. [32] used both local and global
sparsity prior of a tensor and presented an enhanced sparsity
prior model. Zheng et al. [33] discussed the LR property along
three directions and proposed the Weighted Sum of Tensor
Nuclear Norm (WSTNN) model for HSI sparse noise removal.
Although these approaches consider the LR prior knowledge
of HSI, they are not effective to suppress mixed noise since
they ignore both the spatial and the spectral information.

Recent studies of HSI denoising focus on the combination of
various types of priors. Xue et al. [34] incorporated the spec-
tral low-rankness into sparse representation to characterize the
spatial structure. Chang et al. [35] designed a unidirectional
LR tensor recovery model to utilize the LR constraint along
the Nonlocal Self-Similarity (NSS) direction and the hyper-
Laplacian prior. Xue et al. [36] explored two characteristics for
HSI: the Global Correlation across Spectrum (GCS) and NSS
over space, and further proposed a nonlocal LR regularized
CANDECOMP/PARAFAC (CP) tensor decomposition (NLR-
CPTD). He et al. [37] proposed a new paradigm to combine
the spatial NSS and global spectral LR property, named non-
local meets global (NGmeet) method. Nevertheless, NSS-
based methods usually establish matrix or tensor groups by
matching Non-local Full Band Patches (NLFBP). When the
spectral band number increases, the size of NLFBP will
become larger, leading to a heavier computation burden. He
et al. [38] proposed a band-by-band total variation regular-
ized LR Matrix Factorization (LRTV) method and Wu et al.
[39] combined the band-by-band TV regularization with the
Weighted Nuclear Norm Minimization (WNNM) model. But
this band-by-band TV regularization causes spectral distortion-
s. To exploit the spatial-spectral information simultaneously,
Wang et al. [40] proposed a novel LR constraint and spatial-
spectral total variation regularization model (LSSTV) and
Fan et al. [41] integrated this kind of SSTV into LR tensor
factorization. Another 3-D anisotropic total variation (3DATV)
is defined by l1 TV along three directions of HSI. He et
al. [42] combined this 3DATV with the local LR matrix
and proposed an LLRSSTV model for the HSI mixed noise
removal. Consequently, Wang et al. [43] injected this 3DATV

regularization into a Tucker decomposition framework. In [44],
we developed the weighted sum of the weighted nuclear norm
(WSWNN) and the weighted sum of the weighted tensor
nuclear norm (WSWTNN), and combined these models with
an SSTV term for HSI mixed noise removal. Nevertheless, this
model has two shortcomings: 1) SSTV focuses on local spatial
and spectral information, leading to artifacts in the denoised
results. Although SSTV is incorporated into WSWNN and
WSWTNN frameworks, SSTV only relies on the l1 norm that
calculates large gradient magnitudes, hurting image smooth-
ness. 2) The modeling just considers how to remove noise
by this combination. HSI denoising is often considered as a
preprocessing step for further HSI classification. In addition
to mixed noise removal, more information such as sharp
image edges for classification should be preserved in the noise
reduction processing.

However, the above TV norms rely on the l1 norm, which
only penalizes large gradient magnitudes and further may
blur the real image edges. Simultaneously, researchers only
consider how to remove noise, but ignore HSI denoising as
a preprocessing step to improve the further classification. To
sharpen image edges, a new l0 gradient minimization has been
proposed for image smoothing [45]. Actually, l1 TV norm is
a relaxation of the l0 gradient which directly calculates the
number of non-zero image gradients. This work has been
used in image denoising [45], image deblurring [46], and
image inpainting [47]. Xu et al. [46] proposed an effective
method based on a generalized l0 sparse expression for motion
deblurring. Due to a significant fraction of non-zero pixels of
depth images, Xue et al. [47] extended the above l0 gradient
into a low gradient and converted this regularization into an LR
framework. We developed the l0 gradient to explore both the
spatial and the spectral structure information and combined
it with the LR Tucker decomposition model [48]. However,
the degrees of smoothness of these methods are controlled
by a parameter, which is given by users and has no physical
meaning. To alleviate this limitation, Ono [49] proposed a
novel l0 gradient projection, which directly used a parameter
to control the degree of smoothness. This parameter has a
clear meaning: it is the l0 gradient value of the output image.
Therefore, in this paper, we extend the l0TV model to cope
with an HSI denoising problem and preserve more information
for classification. Nevertheless, we find it hard to distinguish
sparse noise when this kind of noise locate on the image edges.
For mixed noise removal, we proposed a novel Tensor low-
rank constraint and l0 gradient (TLR-l0TV) model. Compared
with existing techniques, the main contributions of this study
are summarized as follows:
(1)We first introduce l0TV into HSI denoising and analyze the

significance of l0TV for HSI. This minimization controls
the number of non-zero image gradients directly and
builds a physical relationship with the l0 gradient value
of the denoised result, which leads to the great benefit of
removing Gaussian noise and preserving image edges.

(2)Based on the global low-rank property of HSI, we inte-
grate Tensor Low-rank (TLR) constraint into the l0TV
framework to suppress the sparse noise located on image
edges. The novel WSWNN-l0TV and WSWTNN-l0TV
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models do not only remove noise, but also provide more
information for the subsequent classification task.

(3)We develop the Alternating Direction Method of Multipli-
ers (ADMM) and the Augmented Lagrange Multiplier
(ALM) to solve the l0TV model and the TLR-l0TV
model, respectively. Experiments on simulated and real
datasets demonstrate the superiority of TLR-l0TV. In
particular, the classification accuracy of the denoised
results by TLR-l0TV is improved significantly.

The remainder of this paper is organized as follows. Some
notations and preliminaries of tensors are introduced in Sec.II.
Then, the introduction and the study of l0 gradient minimiza-
tion for HSI denoising is given in Sec.III. The TLR-l0TV
is described in Sec.IV. The experimental results and analysis
are provided in Sec.V. Finally, the conclusions are drawn in
Sec.VI

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce some notations and prelim-
inaries. For clear description, the notations are list in Table
I.

TABLE I: The notations used in the paper

Notation Description

x scalars

x vectors

X matrices

X ∈ Rh×v×z tensors with 3-modes

Xhi,vi,zi the (hi, vi, zi)-element of X
X (i, :, :), X (:, i, :) and X (:, :, i) the ith horizontal, lateral and frontal slices

||X ||1 =
∑
hi,vi,zi

|Xhi,vi,zi | l1 norm

||X ||F =
√∑

hi,vi,zi
|Xhi,vi,zi |2 Frobenius norm

σi(X) the singular values of matrix X
||X||∗ =

∑
i σi(X) nuclear norm

||x||2 =
√∑

i |xi|2 l2 norm

X̂ =fft(X , [], 3) Fourier transformation of X along mode-3

Definition 1 (Mixed l1,0 pseudo-norm [49]): Given a vector
y ∈ Rm and index sets θ1, ..., θi, ..., θn(1 ≤ n ≤ m) that
satisfies
• Each θi is a subset of 1,...,m,
• θi ∩ θl = ∅ for any i 6= l,
• ∪ni=1θi = 1, ...,m,

the mixed l1,0 pseudo-norm of y is defined as:

||y||θ1,0 = ||(||yθ1 ||1, ..., ||yθi ||1, ...||yθn ||1)||0, (1)

where yθi denotes a sub-vector of y with its entries specified
by θi and || · ||0 calculates the number of the non-zero entries
in (·).

Definition 2 (Indicator function I(y) of l1,0 mixed pseudo-
norm [49]):

I||B·||θ1,0(y) =


0, ||By||θ1,0 ≤ γ,

∞, otherwise,
(2)

where B is a is a given operator and γ is a given parameter.
In this paper, B is a diagonal tensor with 0 or 1 entries and γ
is a desired degree of l0TV imposed on denoised results.

Proposition 1 (Projection onto l1,0 mixed pseudo-norm ball
with binary mask [49]): Set y ∈ Rm as a known vector,
set γ as a non-negative integer. Let W be a known diagonal
binary matrix, and let θ1, ..., θi, ..., θn(1 ≤ n ≤ m) be index
sets satisfying the conditions from definition 1. Without loss
of generality, Wy = (yTθ1 ...y

T
θn

)T are assumed. yθ1 ...yθn are
sorted in descending order according to ||yθ→

1

||2 > ||yθ→
2

||2 >
... > ||yθ→

n
||2, where yθ→

1

...yθ→
n

are obtained with the new

order, and the original index sets i have
→
i that corresponds

to it one by one.
For the following problem

min
y∗
||y∗ − y||2 s.t. ||Wy∗||θ1,0 ≤ γ, (3)

one of the optimal solution is given by:

y∗ =


y, ||Wy||θ1,0 ≤ γ,

(ỹTθ−→
1
...ỹTθ−→n )T + (I−W)y, ||Wy||θ1,0 > γ,

(4)

where

ỹTθ−→
i

=


yTθi , if i ∈ {1, ..., γ} ,

0, if i ∈ {γ + 1, ..., n} .
(5)

Example: Let y := (1, 5,−2, 9, 6,−3) ∈ R6, γ =
1,W := diag(1, 1, 1, 0, 1, 1), and n = 3, so index sets
include θ1 := {1, 2}, θ2 := {3, 4}, θ3 := {5, 6}. Then,
Wy = (1, 5,−2, 0, 6,−3) and subvectors of y are obtained:
yθ1 = [1, 5],yθ2 = [−2, 0],yθ3 = [6,−3]. Since ‖yθ1‖2 =√

26, ‖yθ2‖2 = 2, ‖yθ3‖2 = 3
√

5, we have ‖yθ3‖2 >
‖yθ2‖2 > ‖yθ1‖2 and sort them in descending order. them
in descending order.

−→
1 = 3,

−→
2 = 1,

−→
3 = 2 and yθ−→

1
=

yθ3 = [6,−3], yθ−→
2

= yθ1 = [1, 5], yθ−→
3

= yθ2 = [−2, 0]

are obtained. Due to ‖Wy‖θ1,0 > γ, the optimal solution is

solution is
(

ỹTθ−→
1
. . . ỹTθ−→n

)T
+ (I − W)y and γ = 1, thus

yθ−→
1

= yθ3 = [6,−3] is selected and its corresponding
original subvector is y∗ = (0, 0, 0, 0, 6,−3) + (0, 0, 0, 8, 0, 0)
= (0, 0, 0, 8, 6,−3).

Definition 3 (Two tensors product [50]): Given two 3-way
tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the result C ∈
Rn1×n4×n3 of the product of A and B is:

C(i, k, :) = A ∗ B =

n2∑
j=1

A(i, j, :) ∗ B(j, k, :), (6)

where A(i, j, :) and B(j, k, :) denote the (i, j, :)-th tubal scalar
of A and (j, k, :)-th tubal scalar of B, respectively. They
can be regarded as two n3-tuples p and q ∈ R1×1×n3 . The
multiplication between p and q represents

o(i) = p ∗ q =

n3−1∑
l=0

p(l)q ((i− l) mod (n3)) (7)

where i = 0, 1, , n3 − 1 and mod is a coterminous operator.
Definition 4 (Conjugate transpose of a tensor): Assuming
X ∈ Rh×v×z is a three-way tensor, its conjugate transpose is
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the tensor conj(X ) = X ∗ ∈ Rv×h×z obtained by conjugate
transposing each of the front slices and reversing the order of
transposed frontal 2 through z.

Definition 5 (Identity tensor): The identity tensor I ∈
Rh×v×z is the tensor with its first frontal slice being the
identity matrix and other frontal slices being all zeros.

Definition 6 (Orthogonal tensor): A three-way tensor Q is
orthogonal if it satisfies Q∗ ∗ Q = Q ∗ Q∗ = I.

Definition 7 (F-diagonal tensor): A three-way tensor S is
f-diagonal if its slices are all diagonal matrices.

Definition 8 (Mode-k matricization/Unfolding [51], [52]):
This operator noted unfold(X , k) reorders the elements of a
tensor X into a matrix X(k). Its three unfoldings are, X(1) ∈
Rh×vz , X(2) ∈ Rv×zh and X(3) ∈ Rz×hv . Inversely, fold(X)
denotes the folding of the matrix into a tensor.

Definition 9 (Tensor Trace Norm [53]): For a 3-way HSI
tensor, its tensor trace norm or weighted sum of the nuclear
norm (WSNN) of the mode-k unfolding matrix is:

||X ||SNN :=
3∑
k=1

αk||X(k)||∗ (8)

where weights αk satisfy αk ≥ 0(k = 1, 2, 3) and
∑3
k=1 αk =

1.
Definition 10 (Tensor Nuclear Norm (TNN) [54]): For a

tensor X ∈ Rh×v×z , its TNN can be expressed as the sum of
nuclear norm of all the frontal slices of X̂ :

||X ||∗ :=

z∑
k=1

||X̂ (:, :, k)||∗. (9)

Definition 11 (Mode-k permutation of a tensor [33]):
For a three tensor X ∈ Rh×v×z , this operator noted
by X k=permutation(X , k) changes its permutation order
of (h, v, z) with k times, i.e., X 1 ∈ Rv×z×h, X 2 ∈
Rz×h×v , X 3 ∈ Rh×v×z . The inverse operator is defined as
X=ipermutation(X k, k).

Definition 12 (The weighted sum of Tensor Trace Norm
(WSTNN) [33]): For a 3-way HSI tensor, its weighted sum
of the tensor nuclear norm (TNN) of each mode-k unfolding
tensor is defined as:

||X ||WSTNN :=
3∑
k=1

αk||X k||∗ (10)

where weights αk satisfy αk ≥ 0(k = 1, 2, 3) and
∑3
k=1 αk =

1.
Definition 13 (Mode-k1, k2 unfolding of a tensor [33]): For

a m-way tensor X ∈ Rn1×n2×...×nm , this operator is denoted
by X(k1,k2) ∈ Rnk1×k2×

∏
i6=k1,k2

ni , whose frontal slices are
the lexicographic ordering of the mode-k1, k2 slice of X .

III. HYPERSPECTRAL l0 TOTAL VARIATION MODEL

A. l0 Gradient model

l0 Gradient model was first proposed by Xu et al. [46]
for natural image denoising, smoothing, enhancement and
extraction because of its powerful edge-preserving property.
For a 2D image X ∈ Rm×n, the l0 Gradient of X is defined
as:

(1)

'(1) ( )B D    (1) '(1) ( )( )I B D      

(1)

Step1 Step2 Step3

l0TV

Sort

Keep γ 

Fig. 1: First iteration result of Algorithm 1 for removing Gaussian
noise.

l0TV(X) =
∑

C(||DhX||1 + ||DvX||1)

=
h∑
i

v∑
j

C(|Xi+1,j − Xi,j |+ |Xi,j+1 − Xi,j |)

(11)

where Dh and Dv are linear difference operators along image
horizontal and vertical directions. C(X) is a binary function
used for counting the number of non-zeros image gradients
and C(X) = 1, if x 6= 0; C(X) = 0, otherwise.

An observed 3D hyperspectral image T ∈ Rh×v×z is a
corrupted observation of a noise free HSI X with mixed noises
including Gaussian noise N and sparse noise S, which leads
to the following degradation model:

T = X + S +N . (12)

The goal of hyperspectral image denoising is to get an un-
corrupted result X for further HSI analysis. With the definition
of l0TV (11), the HSI denoising problem is expressed as

min
X ,S
‖T − X − S‖2F + λ1‖S‖1 + λ2

z∑
k=1

l0TV(X k), (13)

where z is the number of hyperspectral bands and X k denotes
the i-th band of the hyperspectral image.

∑z
k=1 l0TV(X k) is a

band-by-band model, which is the simplest way of extending
l0TV to hyperspectral images. Each band is separately de-
noised and its spatial smoothness is promoted, but the intrinsic
spectral correlation is ignored. Simultaneously, the same regu-
larization parameter λ2 results in equal regularization strength
for all bands. Since each spectral band has a different noise
intensity, it is difficult to select a suitable value of λ2 is hard
to select. Large values of λ2 cause over-smoothing in the
low-noise-intensity bands while small ones lead to poor noise
removal in the high-noise-intensity bands.

B. l0TV model

The l0 gradient is firstly applied to the HSI and its new
formulation is given by using definition 1. Parameter γ
denotes the l0 gradient value of the output image itself and
replaces the above-mentioned parameter λ2. l0 Hyperspectral
Total Variation (l0TV) model is defined as
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l0TV(X ) =

h∑
i

v∑
j

C(

z∑
k

(|Xi+1,j,k −Xi,j,k|+ |Xi,j+1,k −Xi,j,k|)),

(14)

where boundary values of gradients are defined as: Xi,j+1,k−
Xi,j,k = 0, if i = h, and Xi+1,j,k − Xi,j,k = 0, if
j = v. l0TV(X ) actually counts the non-zeros gradients in the
spatial dimension with the assistance of spectral information,
which greatly benefits for finding the spatial edges of the
hyperspectral image. With definition 1, another formulation
of l0TV becomes:

l0TV(X ) = ||BDX||θ1,0, (15)

where operator D is an operator to calculate both horizontal
and vertical differences. Operator B is an operator that forces
boundary values of gradients to be zero when i = h and j =
v. Let us see a simple example. Example 1: A tensor X ∈
R3×3×2 and its BDX ∈ R3×3×2×2 can be expressed as:

X (:, :, 1) =

 X111 X121 X131

X211 X221 X231

X311 X321 X331

 (16)

X (:, :, 2) =

 X112 X122 X132

X212 X222 X232

X312 X322 X332

 (17)

(BDX )(:, :, 1, 1) =

 X121 −X111 X131 −X121 0
X221 −X211 X231 −X221 0
X321 −X311 X331 −X321 0

 (18)

(BDX )(:, :, 2, 2) =

 X122 −X112 X132 −X122 0
X222 −X212 X232 −X222 0
X322 −X312 X332 −X322 0

 (19)

(BDX )(:, :, 1, 1) =

 X211 −X111 X221 −X121 X231 −X131

X311 −X211 X321 −X221 X331 −X231

0 0 0


(20)

(BDX )(:, :, 2, 2) =

 X212 −X112 X222 −X122 X232 −X132

X312 −X212 X322 −X222 X332 −X232

0 0 0


(21)

With definition 1, here n = 9 and each yθi is obtained
by mode-1,2 unfolding (BDX )(1,2) ∈ R9×2×2, for example,
yθ1 = [X121−X111,X122−X112,X211−X111,X212−X112]T .
It is easily seen that l0TV(X ) is equal to ||BDX||θ1,0,

This model counts the number of pixels along the horizontal
and vertical direction with the assistance of spectral dimension,
which actually quantifies the spectral-spatial flatness of the
hyperspectral image. The above-mentioned parameter λ2 is a
weight controlling the significance of l0 regularization, but λ2

is hard to be determined since it has no physical meaning and
has no relation to the flatness of X . Therefore, the l0 gradient
value γ of X is introduced to replace λ2 and directly controls
the flatness of the denoised image. The hyperspectral image
denoising model based on l0TV is rewritten as:

min
X ,S
‖T − X − S‖2F + λ‖S‖1,

s.t. ||BDX||θ1,0 ≤ γ.
(22)

C. Optimization Procedure

To apply ADMM method [55] for the aforementioned
problem and introduce auxiliary variable V , we introduce
definition 2 to reformulate (22) as follows:

min
X ,S,V

‖T − X − S‖2F + λ‖S‖1 + I||B·||θ1,0(V),

s.t. V = DX .
(23)

The aforementioned problem can be expressed as an uncon-
strained optimization problem:

min
X ,S,V

|T − X − S‖2F + λ‖S‖1 + I||B·||θ1,0(V)

+ β||V −DX − Y||2F
(24)

where β is a regularization parameter and Eq. (24) is divided
into three sub-problems:

1) min
X
‖T − X − S‖2F + β||V −DX − Y||2F , (25)

2) min
S,
‖T − X − S‖2F + λ‖S‖1, (26)

3) min
V

I||B·||θ1,0(V) + β||V −DX − Y||2F . (27)

Step 1: Since the function of X is strictly quadratic, gradient
descent can be used to find a global solution. Set the partial
derivative of the function of X as zero, and yield the following
linear equation:

(1 + βD∗D)X = T − S + βDTV − Y, (28)

where D∗ indicates the adjoint operator of D. Here, Fast
Fourier Transform (FFT) is applied for speedup and the
solution is calculated as

X = ifft(
fft(T − S + βDTV − Y)

1 + β|fft(D∗D)|2
), (29)

where fft and ifft are fast fourier transform matrix and its
inverse matrix, respectively. | · |2 denotes element-wise square.
Step 2: Eq. (26) is rewritten as:

min
S

λ‖S‖1 + ‖S − (T − X )‖2F , (30)

By introducing the soft-thresholding operator, the solution is
obtained as:

S = Rλ/2[T − X ] (31)

where Rλ
2
(·) is the soft-thresholding operator defined as

follows:

R∆(x) =


x−∆, x > ∆

x+ ∆, x < ∆

0, otherwise.

Step 3: Actually, the sub-problem of V is identical to the
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following constrained minimization problem:

min
V
||V −DX − Y||2F

s.t. ||BV||θ1,0 ≤ γ,
(32)

where the parameter β is omitted because it has no influence
on the optimization. Eq. (32) is solved by Proposition 1.
The detail of the l0TV method is summarized in Algorithm
1. To more intuitively illustrate the effect of l0TV, the first
iteration of Algorithm 1 for removing the Gaussian noise
(SNR=10∼20 dB) is given in Fig. 1. V ′(1), ...,V ′(1)

θγ
is sorted

in descending order and V ′(1)
θγ+1

= 0, ...,V ′(1)
θn

= 0 are set as
zero vectors. A scalar η ∈ [1, 1.5] is introduced for gradually
increasing the value of β, which leads to ADMM stability
for non-convex optimization. This can be supported by recent
ADMM studies for non-convex cases [56], [57]. The results
by ADMM converges to a stationary point under appropriate
conditions. Similar strategies are also extended in existing
image processing optimization algorithms [30], [31], [34],
[43], [45].

Algorithm 1 l0TV for HSI mixed denoising

Input: T , λ, γ
1: Initializtion: X = S = 0, V = Y = 0, maxiter = 200,
i = 0, ε = 10−4 ∗ hv,η ∈ [1, 1.5]

2: while 0 ≤ i ≤ maxiter or | ||BDX||θ1,0 − γ| > ε
3: i = i+ 1;
4: update X by solving Eq. (29):

X = ifft(fft(T −S+βDTV−Y)
1+β|fft(D)|2 )

5: update S by solving Eq. (31):
S = Rλ/2[T − X ]

6: update V by solving Eq. (32):
7: V ′ = B(DX + Y) ,
8: Sort V ′θ1 , ...,V

′
θn

in descending order in terms of l2
norms, let V ′θγ+1

= 0, ...,V ′θn = 0 and then get a new
V ′,

9: V = V ′ + (I −B)(DX + Y)
10: update the multipliers

Y = Y + (DX − V)
11: β = η ∗ β
12: end while
Output: X .

IV. TENSOR LOW-RANK CONSTRAINT AND l0
HYPERSPECTRAL TOTAL VARIATION

In this section, the mathematical formulation of our pro-
posed method is presented systematically and its framework
is illustrated in Fig. 2.

A. TLR-l0TV model

As previously stated, by combing l0TV model and tensor
low-rank constraint, we propose a novel hyperspectral mixed

denoising model, termed as TLR-l0TV, which is formulated
as:

min
X ,S

m∑
k=1

αkEk(X )ω + λ‖S‖1 + µ‖T − X − S‖2F ,

s.t. ||BDX||θ1,0 ≤ γ,
(33)

where λ and µ are two positive regularization parameters.
Instead of a simple 2-D low-rank matrix or a 3-D tensor, the
TLR model

∑m
k=1 αkEk(X ) uses tensor low-rank property for

obtaining uncorrupted part from the noisy hyperspectral image.
The functions Ek(X )ω are set to be ||X(k)||ω,∗ in WSWNN-
l0TV-based method and ||X k||ω,∗ in WSWTNN-l0TV-based
method. For the second term ‖S‖1, sparse noises including salt
and pepper noise, dead-line noise are detected by l1 norm. The
Frobenius norm ||T −X −S||2F is used to suppress Gaussian
noise. As mentioned in Section III-B, ||BDX||θ1,0 ≤ γ is
another expression of l0TV(X ), which keeps more image
structure details and further remove Gaussian noise.

B. Optimization Procedure

The Augmented Lagrange Multiplier (ALM) [58] frame-
work is developed to solve problem (33). By introducing
auxiliary variables V and Mk with k = 1, 2, 3, Eq. (33) is
rewritten into the following equivalent minimization:

min
X ,Mk,S,V

m∑
k=1

αkEk(M)ω + λ‖S‖1 + I||B·||θ1,0(V)

+ µ‖T − X − S‖2F ,
s.t.M1 =M2 =M3 = X ,V = DX .

(34)

With the ALM framework, Eq. (34) is transformed into its
corresponding Lagrangian function:

min
X ,Mk,S,V

m∑
k=1

αkEk(Mk)ω + λ‖S‖1 + µ‖T − X − S‖2F + I||B·||θ1,0
(V)

+

3∑
k=1

(< Y1k,Xk −Mk > +
β

2
||Xk −Mk||2F )

+ < Y2, DX − V > +
β

2
||DX − V||2F .

(35)

Eq. (35) can be divided into four sub-problems and be solved
by the following steps:
Step 1: TheMk, k = 1, 2, 3-related sub-problem is given as:

min
Mk

αk
β
Ek(Mk)ω +

1

2
||Mk − (X +

Y1k

β
)||2F , (36)

For WSWNN form, Eq.(36) can be rewritten as:

min
Mk

αk
β
||M(k)||ω,∗ +

1

2
||Mk − (X +

Y1k

β
)||2F . (37)

Eq. (37) is a WNNM problem, which is solved by the
following several steps [59]. (1) Calculate the singular value
matrix Σ of SVD(unfold(X + Y1k

β , k)) = [U,Σ,V]. (2)
Apply the weighted shrinking operator Rαk

β
(X + Yk1 ) =

diag((Σ(i, i) − αk
β ωi)+) to the above singular value matrix

Σ, where ωi is the weight calculated by ωi = 1
Σ(i,i)+ε , ε > 0

Authorized licensed use limited to: Jocelyn Chanussot. Downloaded on February 14,2021 at 10:03:44 UTC from IEEE Xplore.  Restrictions apply. 



1932-4553 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2021.3058503, IEEE Journal
of Selected Topics in Signal Processing

7



1|| ||

Noisy HSI Clean HSI

l0TV

Sort

Keep γ 

z

h

v



Tensor low rank

2|| ||F   

+ +

Convergence

ADMM 

Yes

No

Sparse noise

v

z

h

z

h

v

h

v

z

1

2

3

X(1)

X(2)

X(3)

h

v

v

z

z

h

Fig. 2: The flow chart of the proposed TLR-l0TV model.

Algorithm 2 Weighted tensor singular value thresholding

Input: Lk ∈ Rh×v×z, αkβ
1: L̂k =fft(Lk, [], 3);
2: for i = 0, 1, . . . , [ z+1

2 ]

3: [Û(:, :, i), Ŝ(:, :, i), V̂(:, :, i)] =SVD(L̂k(:, :, i));
4: ω = 1

diag(Ŝ(:,:,i))+ε
;

5: Ŝnew(:, :, i) = max(Ŝ(:, :, i)− αk
β ω, 0);

6: end for
7: for i = [ z+1

2 + 1], . . . , z

8: Û(:, :, i) =conj(Û(:, :, z − i+ 2));
9: Ŝnew(:, :, i) =conj(Ŝnew(:, :, i));

10: V̂(:, :, i) =conj(V̂(:, :, z − i+ 2));
11: end for
12: U =ifft(Û , [], 3), Snew =ifft(Ŝnew, [], 3), V =ifft(V̂, [], 3),
13: Mk

k = U ∗ Snew ∗ V∗;
14: Mk = ipermutation(Mk

k, k);
Output: Mk.

is a small positive value. (3) The estimated M(k) andMk are
constructed by:

M(k) = URαk
β

(X +
Y1k

β
)VT , Mk = fold(M(k), k). (38)

For WSWTNN form, Eq.(36) can be transformed as:

min
Mk

αk
β
||Mk

k||ω,∗ +
1

2
||Mk − (X +

Y1k

β
)||2F . (39)

Eq. (39) is the mode-k permutation of tensor Mk. Let
Lk = X + Y1k

β . The weighted tensor singular value thresh-
olding method can used to solve Eq. (39). The details are
shown in Algorithm 2.
Step 2: The S-related sub-problem is rewritten as:

Algorithm 3 TLR-l0TV for HSI mixed denoising

Input: T , αk, λ, γ, µ, β
1: Initializtion: X = S = 0,Mk = Y1k = 0, V = Y2 = 0,
maxiter = 200, i = 0, ε = 10−4 ∗ hv, η ∈ [1, 1.5]

2: while 0 ≤ i ≤ maxiter or | ||BDX||θ1,0 − γ| > ε
3: i = i+ 1;
4: update Mk by solving Eq. (36):
5: For the WSWNN problem:

M(k) = Udiag((Σ(i, i) − ωi)+)VT , Mk =
fold(M(k));

6: Solve the WSWTNN problem by Algorithm 2,
7: update S by solving Eq. (40):

S = Rλ/2β [T − X ],
8: update V by solving Eq. (41):
9: V ′ = B(DX + Y2

β ),
10: Sort V ′θ1 , ...,V

′
θn

in descending order in terms of l2
norms, let V ′θγ+1

= 0, ...,V ′θn = 0 and then get a new
V ′,

11: V = V ′ + (I −B)(DX + Y2

β ),
12: update X by solving Eq. (44):

X = ifft(
fft(µ(T −S)+β

∑3
k=1(Mk−

Y1k
β +βD∗(V−Y2β )))

µ+3β+β|fft(D∗D)|2 ),
13: update the multipliers

Yk1 = Yk1 + β(Xk −Mk),
Y2 = Y2 + β(DX − V),

14: γ = η ∗ γ,
15: end while
Output: X .

argmin
S

µ‖T − X − S‖2F + λ‖S‖1

=R λ
2µ

[T − X ].
(40)

Step 3: The V-related sub-problem has the following formu-
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TABLE II: The added mixed noises in six cases.

Noise Case PSNR(dB)
Case 1 Gaussian (SNR = 10 ∼ 20 dB)
Case 2 Gaussian (SNR = 10 ∼ 20 dB)+salt and pepper(10%) in all bands
Case 3 Gaussian (SNR = 10 ∼ 20 dB)+salt and pepper(20%) in all bands

+ four deadlines in each of four random bands
Case 4 Gaussian (mean SNR = 12.25 dB, and noise variance is calculated by the Eq.(49) )
Case 5 Gaussian (mean SNR = 12.25 dB, and noise variance is calculated by the Eq.(49) )

+salt and pepper(10%) in all bands
Case 6 Gaussian (mean SNR = 12.25 dB, and noise variance is calculated by the Eq.(49) )+salt and

pepper(20%) in all bands + eight deadlines in each of eight random bands
Case 7 Gaussian (zero-mean, and noise variance is different for different bands and is selected from 0.1∼0.2 randomly)
Case 8 Gaussian (zero-mean, and noise variance is different for different bands and is selected from 0.1∼0.2 randomly)

+salt and pepper(selected from 0 to 20% randomly) in all bands
Case 9 Gaussian (zero-mean, and noise variance is different for different bands and is selected from 0.1∼0.2 randomly)

+salt and pepper(selected from 0 to 20% randomly) in all bands
+ dead-lines in 61∼70 bands (with the number of stripes randomly selected from 1 to 10

and the width of the dead-lines randomly generated from 1 to 3)

lation:

argmin
V

I||B·||θ1,0(V) + µ|| V −DX − Y2

β
||2F . (41)

As mentioned in section III-C, the solution of Eq. (41) is
also obtained by Proposition 1.
Step 4: The X -related sub-problem is reformulated as:

min
X

µ‖T − X − S‖2F + β

3∑
k=1

||Mk −X −
Y1k

β
||2F

+ β||V −DX − Y2

β
||2F

(42)

Eq. (42) can be solved by using the following normal
equation:

(µ+ 3β + βD∗D)X = µ(T − S) + β
3∑
k=1

(Mk −
Y1k
β

) + βD∗(V −
Y2
β

)

(43)

By FFT, the final solution X is expressed as:

X = ifft(
fft(µ(T − S) + β

∑3
k=1(Mk − Y1kβ + βD∗(V − Y2

β
)))

µ+ 3β + β|fft(D∗D)|2
).

(44)

The aforementioned description of the proposed TLR-l0TV
model via ADMM is summarized as Algorithm 3.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, both simulated and real data experiments
on HSI denoising are conducted to verify the performances of
the proposed TLR-l0TV. Here, six different state-of-art HSI
denoising methods are selected for comparison, i.e., Low-
Rank Matrix Recovery (LRMR) [19], TV regularized Low-
Rank method (LRTV) [38], Spatio-Spectral Total Variation
(SSTV) [18], low-rank Tensor Approximation (LRTA) [17],
TV regularized low-rank Tensor Decomposition (LRTDTV)
[13], Non-local Meets Global (NGmeet) [37], HSI Spatial-
Spectral Deep Residual Convolutional Neural Network (HSID-
CNN) [25], and Multidirectional Low-Rank Modeling and
SpatialSpectral Total Variation (MLR-SSTV) [44].

A. Simulated HSI data Experiments
1)Data description and noise Configuration: The Indian

synthetic (Indian-s) data is generated by USGS splib06 using

the ground truth of the Indian Pines dataset, which is also
considered in [19], [43], [60]. The Indian-s data consists of
17 pure endnumbers extracted from USGS splib06. The whole
data contains 145×145 pixels and 175 bands. To qualitatively
evaluate the denoised results, we adopt four evaluation metrics
including the Mean Peak Signal to Noise Ratio (MPSNR),
Mean Structural Similarity Index (MSSIM), the Erreur Rela-
tive Globale Adimensionnelle de Synthese (ERGAS):

MPSNR =
1

z

z∑
i=1

PSNR(X (:, :, i),X (:, :, i)), (45)

MSSIM =
1

z

z∑
i=1

SSIM(X (:, :, i),X (:, :, i)). (46)

ERGAS =

√√√√1

z

z∑
i=1

mse
(
X (:, :, i),X (:, :, i)

)
Mean2 (X (:, :, i))

, (47)

and the mean spectral angle distance (MSAD) of all the spectral
signatures between noisy and denoised images is calculated as follows
and its unit is degree (i. e. deg.) [40], [61], [62]:

MSAD =
1

hv

hv∑
i=1

180

π
× arccos

(
X(3)(i, :)

)T · (X(3)(i, :)
)∥∥X(3)(i, :)

∥∥ · ∥∥X(3)(i, :)
∥∥ , (48)

where X (:, :, i) and X (:, :, i) denote the ith band of the
reference and denoised images, and X(3)(i, :) and X(3)(i, :)
are the ith spectral signatures of two images. The operator
Mean2(A) computes the mean of the values in matrix A.

To simulate noisy HSI data, Gaussian noise, salt and pepper
noise, dead-line noise and strips are added to the Indian-s data.
The details of noise cases are given in the Table II and for the
CASE 4∼6, the variance σ2

z of Gaussian noise is defined as
[49]

σ2
z = δ2 exp

{
−(z − Z/2)2/

(
2ξ2
)}∑Z

z=1 exp {−(z − Z/2)2/ (2ξ2)}
(49)

where δ and ξ are two adjustable parameters and the mean
noise SNR is set as 12.34 dB.

2)Comparison with Other Methods: TLR-l0TV methods
are compared with the other HSI denoising methods on simu-
lated Indian-s data. Table III presents the results of mixed noise
removal by all the compared methods, where the best ones
are labeled in bold and the second-best ones are underlined.
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TABLE III: Quantitative results of all the methods under different mixed noise cases for Indian-s dataset.

Noise Case
Indian-s Dataset

Index Noisy LRMR LRTV SSTV LRTA LRTDTV NGmeets HSID-CNN MLR-SSTV WSWNN-l0TV WSWTNN-l0TV
Case 1 MPSNR 26.34 41.50 44.39 42.11 28.95 45.70 40.51 37.87 43.50 48.36 50.97

MSSIM 0.5125 0.9554 0.9895 0.9706 0.6185 0.9947 0.9906 0.9271 0.9841 0.9983 0.9989
EGRAS 11.4981 1.7790 1.7970 1.6352 8.5190 1.4964 2.1202 3.7806 1.4389 0.9809 0.6559
MSAD 11.1090 1.8373 1.6352 1.7533 7.7411 1.3759 2.3569 2.5400 1.5326 0.8849 0.6057

Case 2 MPSNR 14.10 40.18 43.25 40.76 26.41 43.91 29.86 28.97 42.97 47.30 48.76
MSSIM 0.1416 0.9362 0.9868 0.9602 0.7243 0.9905 0.9537 0.7143 0.9784 0.9979 0.9982
EGRAS 46.9504 11.1352 17.8865 3.5510 3.6063 3.2904 8.3894 9.2989 4.4786 3.4705 2.9667
MSAD 34.4532 2.1259 1.7792 2.0229 9.3239 1.5426 5.6182 7.6165 4.5443 0.9289 0.7438

Case 3 MPSNR 11.42 39.15 40.51 39.78 22.85 42.80 24.52 24.16 42.05 45.97 46.55
MSSIM 0.0742 0.9332 0.9827 0.9565 0.6539 0.9893 0.8858 0.5528 0.9734 0.9970 0.9971
EGRAS 63.0108 2.3057 1.9672 2.1835 18.5049 1.5383 16.4128 16.3973 1.6359 1.1617 1.0183
MSAD 39.9088 2.3737 2.3184 2.4094 11.9728 1.5287 16.4128 11.0080 1.7363 1.1658 1.0323

Case 4 MPSNR 23.51 38.84 41.52 39.17 28.03 42.17 39.58 35.56 40.90 46.04 47.67
MSSIM 0.4147 0.9081 0.9667 0.9682 0.5869 0.9663 0.9883 0.8608 0.9584 0.9970 0.9974
EGRAS 16.0971 2.5499 2.4073 2.3333 9.3715 1.7867 2.2857 4.4169 1.8937 1.1253 0.8939
MSAD 14.6163 2.4827 2.0545 2.3549 8.3010 1.6282 2.5483 3.2425 1.9617 1.1318 0.9018

Case 5 MPSNR 13.62 37.91 39.72 38.14 26.33 40.83 29.36 28.29 39.82 45.45 46.79
MSSIM 0.1264 0.8965 0.9647 0.9075 0.7354 0.9553 0.9501 0.6911 0.9394 0.9965 0.9967
EGRAS 16.0887 2.8033 2.9360 2.6097 10.9828 2.2039 8.5472 9.5594 2.1487 1.1940 0.9934
MSAD 36.5602 2.7355 2.4864 2.6529 9.0311 1.9092 5.8010 7.8467 2.1635 1.2042 0.9925

Case 6 MPSNR 11.13 36.68 38.51 37.04 22.67 39.04 23.97 23.64 38.73 44.41 44.98
MSSIM 0.0681 0.8757 0.9444 0.9143 0.6879 0.9623 0.8642 0.5291 0.9272 0.9959 0.9965
EGRAS 63.7664 3.2670 4.6684 2.9260 18.3834 3.1572 16.7900 17.1243 2.4363 1.4017 1.2770
MSAD 35.5602 3.1039 3.0536 3.0973 11.9516 2.5337 9.6684 11.3056 2.4338 1.3089 1.1878

Case 7 MPSNR 16.07 34.66 37.69 32.04 27.96 38.16 40.06 33.24 39.40 40.88 42.27
MSSIM 0.1499 0.8819 0.9412 0.7656 0.6828 0.9594 0.9880 0.8671 0.9680 0.9926 0.9927
EGRAS 36.0327 3.7659 4.2930 5.9355 8.7951 2.7124 2.1434 5.3771 2.2891 2.1258 1.6963
MSAD 32.9956 4.2082 3.3816 6.6732 9.7845 2.8561 2.4015 4.8156 2.5384 2.3278 1.8892

Case 8 MPSNR 12.93 33.86 36.54 31.32 23.99 36.83 27.02 25.87 37.51 40.45 41.29
MSSIM 0.0956 0.8631 0.9383 0.7403 0.6173 0.9703 0.9073 0.6307 0.9614 0.9920 0.9913
EGRAS 54.4352 4.1185 4.7792 6.3556 17.4364 3.1778 14.4709 15.2208 3.0007 2.1868 1.8802
MSAD 36.5381 4.5191 3.4203 7.0768 11.8623 3.1017 8.1556 9.6958 2.9030 2.3947 2.0886

Case 9 MPSNR 12.87 33.78 36.16 31.22 23.15 36.18 26.79 25.63 37.30 40.24 40.81
MSSIM 0.0951 0.8615 0.9267 0.7388 0.5400 0.9528 0.9035 0.6250 0.9678 0.9918 0.9907
EGRAS 54.5384 4.1608 5.3751 6.3824 18.4054 3.4232 14.6071 15.3156 3.5446 2.2145 1.9825
MSAD 36.5962 4.5275 3.6142 7.1007 12.9351 3.4077 8.2190 9.8136 3.0214 2.4002 2.1698

(a) (b) (c) (d) (f) (g) (h) (i)(e)

 

(j) (k) (l)

Fig. 3: Denoised results by all the compared methods: (a) original band 15, (b) simulated noise band of case 6, (c) LRMR, (d) LRTV,
(e) SSTV, (f) LRTA, (g) LRTDTV, (h) NGmeet, (i) HSID-CNN, (j) MLR-SSTV, (k) WSWNN-l0TV, (l) WSWTNN-l0TV.

(a) (b)

Fig. 4: PSNR and SSIM values of each band in Case 6: (a) PSNR,
(b) SSIM.

Overall, our proposed TLR-l0TV methods achieve the highest
MPSNR, MSSIM, ERGAS, and MSAD values. LRTA fails to

remove mixed noise and has the worst performance among
all compared methods. NGmeet and HSID-CNN get higher
metric values than LRTA, especially in Gaussian noise cases.
But these two methods also hardly have good performances
for mixed noise removal since sparse noise is ignored in their
modelings. LRMR rearranges an HSI data into a 2-D matrix
and loses its effectiveness in cases 7 ∼ 9. Similarly, the
quantitative evaluation results of SSTV in cases 7 ∼ 9 are
also worse than its other cases. Obviously, pure LR, TLR, or
TV methods appear unsuitable for the complicated Gaussian
noise distribution like cases 7 ∼ 9 since they only consider
one type of HSI prior knowledge. LRTV combines low-rank
matrix property with a band-by-band TV regularization, which
leads to better results than LRTA, LRMR, and SSTV. LRTDTV
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(a) (b) (c) (d) (f) (g) (j) (k)(e) (h) (i) (l)

Fig. 5: Denoised results by all the compared methods: (a) original band 65, (b) simulated noise band of case 9, (c) LRMR, (d) LRTV,
(e) SSTV, (f) LRTA, (g) LRTDTV, (h) NGmeet, (i) HSID-CNN, (j) MLR-SSTV, (k) WSWNN-l0TV, (l) WSWTNN-l0TV.

(a) (b)

Fig. 6: PSNR and SSIM values of each band in Case 9: (a) PSNR,
(b) SSIM.

explores the low-rank tensor property and inserts a 3DATV
regularization into a low-rank Tucker decomposition model.
Therefore, LRTDTV achieves better metric scores than the
first four approaches. Due to the introduction of the l1TV
norm, the performance of MLR-SSTV remains limited on
the recovery of the image texture structure. However, our
proposed models obtain the best quantitative evaluation scores
and this improvement demonstrates the contributions of the
tensor low-rank and the l0TV prior knowledge. Especially,
l0TV regularization is excellent for removing Gaussian noise,
as the results of cases 1, 4 and 7 show.

In Fig.3 and Fig. 5, the performances of seven compet-
ing methods are further visually compared under two mixed
noise cases 6 and 9. The denoised results by LRMR, LRTV
and LRTA still remain a lot of Gaussian noise and dead-
line noise. The results by NGmeet and HSID-CNN contain
unexpectedly spectral distortion since they can hardly cope
with the mixed noise cases. SSTV, LRTDTV, and MLR-SSTV
perform comparatively better, but their results contain some
evident artifacts, hindering further HSI analysis work like HSI
classification. The proposed TLR-l0TV models remove most
of the mixed noise and preserve clear image details like sharp
image edges.

Fig. 4 and Fig. 6 give the PSNR and SSIM values of
each band in cases 6 and 9, respectively. The PSNR and
SSIM values of LRTA shown in blue are lower than the
other models. The curves of LRMR and LRTV vary similarly,
and they perform worse suddenly when they encounter the
heavy dead-line noises. In addition, many serious fluctuations
exist in the curves of NGmeet and HSID-CNN, especially
for those bands with salt and pepper noise and dead-lines.
Due to the considerations of the l1TV norms, LRTDTV and

MLR-SSTV get much higher PSNR and SSIM values than
the aforementioned algorithms. Our proposed WSWNN-l0TV
and WSWTNN-l0TV shown in yellow and red provide the
best performances among all the compared methods for almost
every band.

3)Discussion: The proposed methods achieve excellent per-
formances on the Indian-s dataset. This dataset has exact image
edges and clear texture, which is beneficial for demonstrating
the superiority of our methods. A sub-image of the Pavia
City dataset of size 128 × 128 × 80 is adapted as another
simulated testing data. Fig. 7 shows the visual results of band
65 in HSI Pavia City under case 6. It is easily seen that
the texture information and image edges are not as clear as
those in Indian-s data. The methods without spatial smoothness
or sparsity constraint fail to completely get rid of all mixed
noise. HSID-CNN, MLR-SSTV, and TLR-l0TV are capable of
better removing mixed noise, whereas MLR-SSTV and TLR-
l0TV preserve the image details and characterize the smooth
structure better than SSTV since these methods consider two
types of constraints. The different image properties of these
two datasets lead to the different available improvement spaces
of PSNR values. The proposed method is more suitable for
handling the HS dataset with more classification classes and
image edges. Therefore, in the next section, we select three real
datasets with classification maps and design the classification
experiments.

4)Effectiveness of l0TV: We prepare two simulated experi-
ments to verify the effectiveness of l0TV and TLR constraint,
respectively. As Fig. 8 (b) shows, the signal-to-noise ratio
(SNR) value varies from 10 to 20 dB randomly for each
band, and the mean SNR value of all bands is 15.16 dB.
l0TV improves the denoising result more than band-by-band
TV and SSTV. The result by band-by-band TV has spatial
over-smoothing, and SSTV causes artifacts. This is the fatal
flaw of the SSTV method for the consequent HIS work
classification. Even combined with the MLR models, SSTV
still causes artifacts in some degree (Fig. 5 (j)), which hinders
the effectiveness of the MLR-SSTV models. In contrast, l0TV
keeps sharp image edges without artifacts. Simultaneously, the
over-smoothing of the denoised result by l0TV is avoided since
spectral information of all bands is also considered.
l0TV leads to a better-denoised result in the Gaussian noise

case. However, it does not always perform better than the
others. As shown in Fig. 9, the Gaussian noise (SNR=10∼20
dB), salt and pepper noise (5% randomly in all bands), and
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(a) (b) (c) (d) (f) (g) (h) (i)(e) (j)

14.12dB, 0.2093 36.69dB, 0.9661 37.12dB, 0.9529 37.55dB, 0.9678 26.56dB, 0.7869 29.20dB, 0.8362 38.51dB, 0.9727 37.57dB, 0.9655 38.76dB, 0.9734

Fig. 7: Denoised results with their (Left) MPSNR and (Right) MSSIM: (a) original band 65, (b) simulated noise band of case 6, (c)
LRMR, (d) LRTV, (e) LRTDTV, (f) NGmeet, (g) HSID-CNN, (h) MLR-SSTV, (i) WSWNN-l0TV, (j) WSWTNN-l0TV.

26.37dB, 0.5129 33.57dB, 0.8911 39.69dB,  0.9381 41.43dB,  0.9862

(a) (b) (c) (d) (e)

Fig. 8: An example of the hyperspectral denoising results with
their PSNR (left) and SSIM (right). (a)Original band 1, (b) noisy
band 1 with a Gaussian noise (SNR=10∼20dB), (c) band-by-band
TV, (d) SSTV, (e) l0TV.

16.38dB, 0.2287 32.04dB, 0.8856 38.74dB, 0.9229 35.50dB, 0.9621

(a) (b) (c) (d) (e)

Fig. 9: An example of the hyperspectral denoising results with
their PSNR (left) and SSIM (right). (a)Original band 15, (b) noisy
band 15 with the mixed noise, (c) band-by-band TV, (d) SSTV,
(e) l0TV.

dead-line noise (4 dead-lines in each of 4 random bands) are
added into the first original hyperspectral image. The degra-
dation in image quality for denoised results with more noises
is intuitively observed from their PSNR values. Nevertheless,
l0TV suffers a more serve decay. This TV focuses on finding
the non-zeros gradients for preserving the image edges, but it
is excessively sensitive to image edges. Nevertheless, as we
can see in Fig. Fig. 9 (e), image structures are recovered by
l0TV with the best SSIM value, but some sparse noises on
the edges are retained by mistake. If these sparse noises can
be removed, the PSNR values will be improved significantly.
l0TV is not accurate enough to characterize the global spectral
correlation of hyperspectral images. To solve this problem, the
global LR property is exploited. The WSWNN and WSWTNN
constraints are beneficial to get rid of sparse noise and hence

are incorporated into an l0TV model.
5)Effectiveness of TLR constraint: To intuitively describe

the significance of TLR constraints, we compare: 1)WSNN, 2)
WSTNN, 3) WSWNN, 4) WSWTNN, 5) l0TV, 6) WSWNN-
l0TV, 7) WSWTNN-l0TV in the case of mixed noise (Gaussian
noise (SNR = 10∼20 dB), salt and pepper noise (5%), and four
dead-lines randomly in four bands). In Fig. 10, the results
restored by these methods are compared with the original
HSI, and the regions marked with the red frame are zoomed.
There still exists more or less dead-lines in the results of
WSNN and WSTNN. Due to the weight nuclear norm in-
troduced, WSWNN and WSWTNN have better performances
to suppress the dead-lines. But we still need to enhance the
spatial smoothness in the results of WSWNN and WSWTNN,
which also promotes us to inject l0TV into the TLR denoising
framework. Therefore, WSWNN-l0TV and WSWTNN-l0TV
are superior to the other methods.

B. Real-world HSI data Experiments

In this section, three real-world HSI datasets are carried
out i.e., Salinas, Indian Pines and Pavia University datasets.
The above-compared methods are still implemented. As orig-
inal reference HSIs are unavailable, we visually observe the
denoised results and do classification experiments to further
demonstrate the denoised performances.

1)Salinas: This scene was acquired by the AVIRIS sensor
over Salinas Valley, California, and was characterized by high
spatial resolution (3.7-meter pixels) with the data size of
512 × 217 × 224. As Fig. 11 (a) shows, noisy images are
corrupted by Gaussian noise. The results of this data set
are presented in Fig. 11. LRMR, SSTV and LRTA fail to
get rid of all Gaussian noise. LRTV, LRTDTV, and MLR-
SSTV achieve better results, but they more or less lose the
local details of HSI images. Although NGmeet and HSID-
CNN remove Gaussian noise effectively, it loses lots of useful
structure information. For more clear explanations, we pro-
vide a classification experiment consequently. The proposed
WSWNN-l0TV and WSWTNN-l0TV methods remove various
noises completely and preserve clear image edges that have a
positive influence on further HSI classification work. Here,
the Support Vector Machine (SVM) [63] algorithm is utilized
to conduct the supervised HSI classification. Salinas ground-
truth contains 16 classes including vegetables, bare soils and
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(a) (b) (c) (d) (e) (f) (g) (h)

36.16dB, 0.8760 38.49dB,0.9306 39.96dB,0.9646 42.19dB,0.9781 35.21dB,0.0.9525 47.25dB,0.9977 49.56dB,0.9986

Fig. 10: Resulting HSIs with their (Left) MPSNR and (Right) MSSIM. (a) Original band 15, (b) WSNN, (c) WSTNN, (d) WSWNN, (e)
WSWTNN, (f) l0TV, (g) WSWNN-l0TV, (h) WSWTNN-l0TV.

(a) (f) (g) (h)(b) (c) (d) (e) (i) (j) (k)

Fig. 11: Denoising results on the Salinas data. (a) Noisy band 1, (b) LRMR, (c) LRTV,(d) SSTV, (e) LRTA, (f) LRTDTV, (g) NGmeet,
(h) HSID-CNN, (i) MLR-SSTV, (j) WSWNN-l0TV, (k) WSWTNN-l0TV.

(f) (g) (h)(a) (b) (c) (d) (e) (i) (j) (k)

Fig. 12: Classification results by all the compared methods on the Salinas data. (a) Original, (b) LRMR, (c) LRTV,(d) SSTV, (e) LRTA,
(f) LRTDTV, (g) NGmeet, (h) HSID-CNN, (i) MLR-SSTV, (j) WSWNN-l0TV, (k) WSWTNN-l0TV.

TABLE IV: Classification results on the Salinas data by different methods.

Class Train/Test Noisy LRMR LRTV SSTV LRTA LRTDTV NGmeets HSID-CNN MLR-SSTV WSWNN-l0TV WSWTNN-l0TV
Brocoli-green-weeds-1 21/2009 0.9869 0.9935 0.9536 0.9874 0.9779 0.9743 0.9894 0.9914 0.9899 0.9990 0.9990
Brocoli-green-weeds-2 38/3726 0.9707 0.9813 0.9967 0.9713 0.9881 0.9957 0.9843 0.9970 0.9970 0.9957 0.9957

Fallow 20/1976 0.7161 0.9847 0.8955 0.9923 0.8543 0.9371 0.9920 0.9938 0.9964 0.9923 0.9928
Fallow-rough-plow 14/1394 0.9659 0.6072 0.9730 0.9645 0.9790 0.9775 0.9406 0.9616 0.9754 1.0000 1.0000

Fallow-smooth 27/2678 0.9653 0.9917 0.9863 0.9604 0.9845 0.9476 0.9698 0.9196 0.9740 0.9898 0.9906
Stubble 40/3959 0.9946 0.9941 0.9874 0.9946 0.9946 0.9941 0.9939 0.9903 0.9946 0.9964 0.9969
Celery 36/3579 0.9938 0.9842 0.9413 0.9938 0.9938 0.9927 0.9929 0.9907 0.9938 0.9910 0.9915

Grapes-untrained 113/11271 0.8328 0.9383 0.8487 0.8833 0.8756 0.8653 0.8856 0.9020 0.9383 0.9837 0.9842
Soil-vinyard-develop 63/6203 0.9754 0.9783 0.9757 0.9757 0.9741 0.9748 0.9694 0.9731 0.9853 0.9969 0.9980

Corn-senesced-green-weeds 33/3278 0.9248 0.9273 0.9226 0.9267 0.9254 0.9168 0.9180 0.9072 0.9414 0.9356 0.9359
Lettuce-romaine-4wk 11/1068 0.9054 0.9198 0.9891 0.9082 0.9073 0.9111 0.9016 0.9016 0.9328 0.9655 0.9489
Lettuce-romaine-5wk 20/1927 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 1.0000 0.9948 0.9756 1.0000
Lettuce-romaine-6wk 10/916 0.9757 0.9757 0.9757 0.9945 0.9757 0.9978 0.9790 0.9956 0.9845 0.9823 0.9823
Lettuce-romaine-7wk 11/1070 0.9150 0.9169 0.9968 0.9150 0.9150 0.8980 0.9112 0.9037 0.9169 0.9075 0.9093

Vinyard-untrained 77/7268 0.6371 0.9426 0.7326 0.6511 0.8587 0.8562 0.7081 0.8228 0.8767 0.9846 0.9899
Vinyard-vertical-trellis 19/1807 0.9732 0.9782 0.9783 0.9748 0.9732 0.9435 0.9843 0.9793 0.9871 0.9234 0.9692

kappa - 0.8860 0.9479 0.9479 0.9002 0.8849 0.9251 0.9074 0.9282 0.9532 0.9807 0.9836
OA - 0.8978 0.9532 0.9237 0.9105 0.9314 0.9326 0.9169 0.9356 0.9580 0.9827 0.9852
AA - 0.9376 0.9437 0.8911 0.9422 0.8969 0.9513 0.9426 0.9521 0.9673 0.9770 0.9802
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 13: Denoised results by all the compared methods on the Indian Pine data: (a) original band 220 (b) LRMR, (c) LRTV,(d) SSTV,
(e) LRTA, (f) LRTDTV, (g) NGmeet, (h) HSID-CNN, (i) MLR-SSTV, (j) WSWNN-l0TV, (k) WSWTNN-l0TV.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 14: Classification results by all the compared methods in the Indian Pine data: (a) original (b) BM4D, (c) LRMR, (d) LRTV,(e)
SSTV, (f) LRTDTV, (g)NGmeet, (h) HSID-CNN, (i) MLR-SSTV, (j) WSWNN-l0TV, (k) WSWTNN-l0TV.

TABLE V: Classification results on Indian Pines data by different methods.

Class Train/Test Noisy LRMR LRTV SSTV LRTA LRTDTV NGmeets HSID-CNN MLR-SSTV WSWNN-l0TV WSWTNN-l0TV
Alfalfa 5/41 0.6341 0.7317 0.6829 0.7804 0.9512 0.6829 0.8537 0.6097 0.9268 0.9512 0.9512

Corn-notill 143/1285 0.8202 0.9105 0.8287 0.9167 0.8249 0.8708 0.8451 0.9012 0.9362 0.9619 0.9315
Corn-mintill 83/747 0.7161 0.8955 0.8888 0.9518 0.7175 0.8969 0.8661 0.9183 0.9732 0.9491 0.9746

Corn 24/213 0.8028 0.9248 0.8309 0.9154 0.8122 0.9201 0.7746 0.9390 0.9061 0.9108 0.9531
Grass-pasture 49/434 0.9377 0.9354 0.9700 0.9723 0.9378 0.9746 0.9539 0.9608 0.9816 0.9816 0.9862
Grass-trees 73/657 0.9497 0.9619 0.9786 0.9863 0.9482 0.9878 0.9848 0.9924 0.9939 0.9985 0.9985

Grass-pasture-mowed 3/25 0.6400 0.6400 0.7600 0.8400 0.6400 0.7200 0.6400 0.7600 0.9200 1.0000 1.0000
Hay-windrowed 48/430 0.9906 0.9976 1.0000 0.9953 0.9907 0.9930 1.0000 0.9930 1.0000 1.0000 1.0000

Oats 2/18 0.7222 0.8333 1.0000 0.9444 0.7778 1.0000 0.8333 1.0000 1.0000 1.0000 1.0000
Soybean-notill 98/874 0.7059 0.8821 0.7276 0.9405 0.7037 0.9165 0.8352 0.8890 0.8982 0.9302 0.9153

Soybean-mintill 246/2209 0.8415 0.9388 0.8632 0.9601 0.8483 0.9157 0.8818 0.9457 0.9479 0.9728 0.9810
Soybean-clean 60/533 0.8480 0.9324 0.9643 0.9699 0.7880 0.9437 0.9099 0.9250 0.9662 0.9681 0.9775

Wheat 21/184 0.9945 0.9945 0.9945 0.9945 0.9945 0.9891 0.9946 0.9837 0.9946 0.9946 0.9946
Woods 127/1138 0.9516 0.9455 0.9472 0.9674 0.9468 0.9964 0.9587 0.9947 0.9912 0.9622 0.9886

Buildings-Grass-Trees-Drives 39/347 0.6311 0.7809 0.8040 0.8587 0.8040 0.8703 0.6686 0.9885 0.9654 0.8732 0.9395
Stone-Steel-Towers 10/83 0.9518 0.9518 1.0000 0.9638 0.9759 0.9879 0.9636 1.0000 1.0000 0.9518 1.0000

kappa - 0.8197 0.9131 0.8675 0.9451 0.8273 0.9114 0.8748 0.9396 0.9526 0.9528 0.9643
OA - 0.8423 0.9237 0.8835 0.9518 0.8484 0.9223 0.8900 0.9438 0.9583 0.9611 0.9686
AA - 0.8212 0.8911 0.8901 0.9349 0.8191 0.9114 0.8728 0.9250 0.9626 0.9620 0.9745

vineyard fields, etc. For each class, approximately 1% of the
labeled samples are chosen randomly for training and the rest
99% are tested. The number of training and test samples for
each class is shown in the second column of Table IV.

Fig. 12 shows the classification results on the Salinas
dataset intuitively. The specific classification accuracy results
of each class and kappa coefficient, Overall Accuracy (OA),
and Average accuracy (AA) are also given in Table IV. It is
easy to find that the classification results have been more or
less improved after the HSI denoising process. An obvious
fragmentary phenomenon is presented in the classification
results of LRTV, SSTV, LRTA, NGmeet, and HSID-CNN,
which can be observed in the green regions of figures. LRMR,
LRTDTV, MLR-SSTV, and the proposed methods suppress
the fragmentary effect in most regions of the HSI, whereas
WSWTNN-l0TV gets the highest metric values with kappa,
OA, and AA of 0.9839, 0.9852 and 0.9802, respectively,
among all the results of seven comparing methods.

2)Indian Pine: This scene was acquired by an AVIRIS
sensor over the Indian Pines test site in North-western Indiana.
It consists of 145 × 145 pixels and 224 spectral reflectance
bands. As Fig. 13 (a) shows, some bands are contaminated by

mixed noise including heavy Gaussian noise and sparse noise,
which has a bad effect on the next processing step like HSI
classification. In Fig. 13, LRTA obtains the worst result. For
the LRMR and LRTV, the dead-line noises remain. Although
SSTV and LRTDTV recover the images better than LRMR
and LRTV, they unavoidably degrade the edges. NGmeet and
HSID-CNN more or less remove some noise, but they lose
their utility and cause some degradation of the image texture
structure. To further compare the performances of the above
methods, we also apply the well-known SVM classifier into
the supervised classification experiment. As the first column
of Table V shows, 16 different classes are employed to test
the classification accuracy. The random 10% of samples from
each class generate the training sets. The classification results
before and after denoising can be found in Fig. 14 and Table V.
Before denoising, the kappa, OA and AA of the original image
are just 0.8197, 0.8423 and 0.8212, respectively. The accuracy
of each class and three metrics are improved after using seven
denoising methods. The evaluation results of LRTV, LRTA,
and NGmeet rise less and the over smoothing of LRTDTV
also causes similar metric values. With the help of TLR
representation and TV regularizers, MLR-SSTV, WSWNN-
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(f) (g) (h)(a) (b) (c) (d) (e) (i) (j) (k)

Fig. 15: Denoising results on the Pavia University data set. (a) Noisy band 1, (b) LRMR, (c) LRTV,(d) SSTV, (e) LRTA, (f) LRTDTV,
(g) NGmeet, (h) HSID-CNN, (i) MLR-SSTV, (j) WSWNN-l0TV, (k) WSWTNN-l0TV.

(f) (g) (h)(a) (b) (c) (d) (e) (i) (j) (k)

Fig. 16: Classification results by all the compared methods on Pavia University data set. (a) Original, (b) LRMR, (c) LRTV,(d) SSTV,
(e) LRTA, (f) LRTDTV, (g) NGmeet, (h) HSID-CNN, (i) MLR-SSTV, (j) WSWNN-l0TV, (k) WSWTNN-l0TV.

TABLE VI: Classification results on Pavia University data by different methods.

Class Train/Test Noisy LRMR LRTV SSTV LRTA LRTDTV NGmeet HSID-CNN MLR-SSTV WSWNN-l0TV WSWTNN-l0TV

Asphalt 53/521 0.7073 0.8590 0.9252 0.8761 0.7564 0.9423 0.8697 0.8761 0.9701 0.9936 1.0000
Meadows 96/957 0.9396 0.9919 0.9419 0.9826 0.9419 0.9837 0.9640 0.9756 1.0000 1.0000 1.0000

Gravel 11/110 0.6162 0.7071 0.7980 0.8384 0.4242 0.7172 0.8687 0.5253 0.9091 0.9394 0.9394
Trees 23/226 0.9754 0.9754 0.9803 0.9704 0.9754 0.9901 0.9803 0.9212 0.9754 0.9507 0.9507

Painted metal sheets 70/698 0.9936 0.9936 0.9968 0.9936 0.9936 0.9952 0.9952 0.9952 0.9952 0.9904 0.9904

Bare Soil 305/3042 0.9708 0.9828 0.9799 0.9850 0.9675 0.9865 0.9839 0.9825 0.9883 0.9989 0.9989
Bitumen 133/1330 0.9282 0.9332 0.9699 0.9457 0.9407 0.9774 0.9816 0.9465 0.9699 1.0000 1.0000

Self-Blocking Bricks 63/630 0.7249 0.7919 0.9153 0.8624 0.8360 0.9665 0.9136 0.9242 0.9735 1.0000 0.9989

Shadows 43/428 0.9818 0.9922 0.9766 0.9896 0.9818 0.9948 0.9948 0.9844 0.9974 1.0000 1.0000
kappa - 0.8998 0.9364 0.9541 0.9492 0.9719 0.9251 0.9593 0.9457 0.9796 0.9950 0.9954
OA - 0.9209 0.9498 0.9638 0.9598 0.9314 0.9777 0.9679 0.9572 0.9839 0.9961 0.9964
AA - 0.8708 0.9141 0.9427 0.9382 0.8686 0.9504 0.9502 0.9484 0.9754 0.9859 0.9864

l0TV and WSWTNN-l0TV produce better results, whereas the
highest metric values with kappa, OA and AA are 0.9643,
0.9686, and 0.9745, respectively for WSWTNN-l0TV.

3)Pavia University: This dataset is collected by the Re-
flective Optics System Imaging Spectrometer (ROSIS) sensor
during a flight campaign over Pavia University, northern Italy.
The size of the selected sub-image is 250 × 121 × 103 and
Image ground truths differentiate 9 classes. As Fig. 15 (a)
shows, the original image contains Gaussian noise and a small
amount of sparse noise. Fig. 15 and 16 give the denoised
and classification results by different methods. The number
of training and test samples for each class are shown in
Table VI. For this image, about 10% of the labeled data
are used as training samples. The classification results have
been improved after denoising methods used. LRMR, SSTV,
LRTA, and NGmeet obtain similar results since they just
use either the low-rank property or the spatial-spectral TV.
LRTV, LRTDTV, and MLR-SSTV exploit these two types of

prior knowledge, but LRTDTV and MLR-SSTV based on the
LR tensor models perform better than LRTV. The proposed
TLR-l0TV methods produce superior results than the above
approaches. In particular, classification accuracies of most
classes are more than 0.99 for WSWTNN-l0TV.

In real-word data and classification experiments, our pro-
posed methods are efficient to remove mixed Gaussian noise
and sparse noise since tensor low-rank prior knowledge is
considered comprehensively. Simultaneously, edges of the de-
noised image are preserved more completely and classification
results on three different data sets are significantly improved
due to the utilization of l0TV regularization.

VI. CONCLUSION

In this paper, we have introduced and analyzed l0TV for
HSI denoising. Different from l1 norms, l0TV establishes
a physical relationship with the l0 gradient values of the
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denoised results. Based on this, we proposed a novel HSI
mixed noise removal method TLR-l0TV. l0 gradients have
been developed into a l0TV model for removing Gaussian
noise more effectively and better preserving the edges than
other existing l1 TVs. The WSWNNM and WSWTNN models
are utilized to explore the global LR property of HSI and
remove sparse noise. Both simulated and real-world data
experiments confirm the superiority of the proposed TLR-l0TV
in both visual and quantitative evaluations. Particularly, we
have verified the powerfulness and effectiveness of HSI de-
noising as a preprocessing step for further classification tasks.
Due to the utilization of l0TV, image edges are recovered more
clearly and classification accuracy after denoising is improved
most.
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