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Abstract—Pansharpening aims at fusing a multispectral and a
panchromatic image, featuring the result of the processing with
the spectral resolution of the former and the spatial resolution of
the latter. In the last decades, many algorithms addressing this
task have been presented in the literature. However, the lack of
universally recognized evaluation criteria, available image data
sets for benchmarking, and standardized implementations of the
algorithms makes a thorough evaluation and comparison of the
different pansharpening techniques difficult to achieve. In this
paper, the authors attempt to fill this gap by providing a criti-
cal description and extensive comparisons of some of the main
state-of-the-art pansharpening methods. In greater details, several
pansharpening algorithms belonging to the component substi-
tution or multiresolution analysis families are considered. Such
techniques are evaluated through the two main protocols for the
assessment of pansharpening results, i.e., based on the full- and
reduced-resolution validations. Five data sets acquired by differ-
ent satellites allow for a detailed comparison of the algorithms,
characterization of their performances with respect to the dif-
ferent instruments, and consistency of the two validation proce-
dures. In addition, the implementation of all the pansharpening
techniques considered in this paper and the framework used for
running the simulations, comprising the two validation procedures
and the main assessment indexes, are collected in a MATLAB
toolbox that is made available to the community.
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Index Terms—Benchmarking, component substitution (CS),
multiresolution analysis (MRA), multispectral (MS) pansharpen-
ing, quality assessment, very high-resolution optical images.

1. INTRODUCTION

ANSHARPENING refers to the fusion of a panchromatic
(PAN) and a multispectral (MS) image simultaneously ac-
quired over the same area. This can be seen as a particular prob-
lem of data fusion since one would aim at combining the spatial
details resolved by the PAN (but not present in the MS) and the
several spectral bands of the MS image (against the single band
of the PAN) in a unique product. With respect to the general
problem of multisensor fusion, pansharpening may not require
the challenging phase of spatial coregistration, since typically
images are simultaneously captured, being the sensors acquir-
ing the PAN and the MS both mounted on the same platform
[1]. Nowadays, PAN and MS images can be obtained in bundle
by several commercial optical satellites, such as IKONOS, Geo-
Eye, OrbView, Landsat, SPOT, QuickBird, WorldView, and
Pléiades. The spatial resolution is even below half a meter for
the PAN (for the commercial satellite product with the highest
spatial resolution), and the spectral resolution can be up to eight
bands captured in the visible and near-infrared wavelengths for
the MS product. The fusion of the PAN and MS images consti-
tutes the sole possibility for achieving images with the highest
resolutions in both the spatial and spectral domains. In fact,
physical constraints preclude this goal from being achieved by
using a single sensor. The demand for pansharpened data is
continuously growing, due to the increasing availability of com-
mercial products using high-resolution images, e.g., Google
Earth and Bing Maps. Furthermore, pansharpening constitutes
an important preliminary step for enhancing images for many
remote sensing tasks, such as change detection [2], object recog-
nition [3], visual image analysis, and scene interpretation [4].
The interest of the community in pansharpening is evident,
by reviewing the recent technical literature. Detailed surveys of
pansharpening algorithms can be found in [1] and [5]-[7].
However, the authors believe that the comparison of the existing
pansharpening methods has not been sufficiently addressed.
The contest launched by the Data Fusion Committee of the
IEEE Geoscience and Remote Sensing Society in 2006 [8]
has made a first step tackling this issue, since it performed an
explicit evaluation of several methods applied to the same data
sets, assessed with the same validation procedure, and using the
same performance metrics.
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This work moves in the same direction. It aspires at con-
tributing to this goal in two ways: by 1) performing a critical
comparison and analysis of many state-of-the-art pansharpen-
ing techniques and 2) providing a framework that gathers the
implementation of the algorithms considered in this paper for
easing their benchmarking and evaluation and aiming at repro-
ducible researches.

The focus is on some widely used algorithms following the
two main approaches, i.e., spectral and spatial, that are tradi-
tionally considered for pansharpening: the component substitu-
tion (CS) and the multiresolution analysis (MRA). The former
relies on the substitution of a component (e.g., obtained by
means of a spectral transformation of the MS data) with the PAN
image. This class comprises such algorithms as intensity—hue—
saturation (IHS) [9], [10], principal component analysis (PCA)
[11]-[13], and Gram—Schmidt (GS) spectral sharpening [14]. In
addition, recently developed methods belonging to this class can
be found in the literature [15], [16]. The MRA approach is based
on the injection of spatial details that are obtained through a
multiresolution decomposition of the PAN image into the re-
sampled MS bands. The spatial details can be extracted accord-
ing to several modalities of MRA: decimated wavelet transform
(DWT) [17], undecimated wavelet transform (UDWT) [18],
“a trous” wavelet transform (ATWT) [19], Laplacian pyra-
mid (LP) [20], and nonseparable transforms, either based on
wavelets (e.g., contourlet [21]) or not (e.g., curvelet [22]).

These two classes of methods will be detailed in Section II.
Approaches different from the two aforementioned classes have
also been proposed in the literature. In some cases, these alter-
native approaches are not fully investigated directions or are
composed by isolated methods. For this reason, they will be
briefly introduced in the following but not included in the com-
parison, since here, the analysis will focus on techniques be-
longing to the two more established and investigated CS and
MRA classes. Algorithms have been proposed based on the
Bayesian paradigm, for carrying out the data fusion task [23].
The difficulty in finding a suitable statistical model to jointly
characterize the pansharpening result and the available MS and
PAN images [24] has strongly limited its use for pansharpening.
However, many contributions based on Bayesian estimation the-
ory have been presented in the recent literature. They are based
on regularized solutions of the ill-posed problem, consisting in
the reconstruction of the (unknown) high-resolution image from
its coarse measurements. Some works rely on total variation
penalization terms [25], [26] and others on recent developments
in sparse signal representations, or compressive sensing theory
[27], [28]. Among the latter, it is possible to refer to the seminal
works [29], [30] that introduced this approach. More recent im-
provements have been achieved through the application of sup-
erresolution techniques, which are already largely diffused in
many image processing and computer vision applications [31].
A method belonging to this family has been presented in [32].

Pansharpening has been also proposed for fusion of PAN
and hyperspectral data [33], [34]. Clearly, this task cannot
be addressed by employing conventional methods, due to the
particular issues that have to be faced, e.g., possible nonsimul-
taneous acquisition, coregistration of the data, different spatial
coverages and resolutions [1], [35].
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A further contribution of this work is the comparison of the
two main validation procedures used for performance assess-
ment. Due to the lack of the reference image (i.e., the image
estimated through pansharpening), universal measures for eval-
uating the quality of the enrichment introduced by pansharp-
ening cannot be explicitly formulated. For this reason, a
common practice is the verification of ideal criteria, among
which the most credited date back to Wald er al. [36]. These
criteria define the characteristics required in the fused product
and are formalized by the consistency and synthesis properties.
The first, which is more easily achievable in practice, involves
the reversibility of the pansharpening process; it states that the
original MS image should be obtainable by simply degrading
the pansharpened image. The synthesis property addresses the
characteristics of the pansharpening result, by requiring that the
final product has to reproduce the characteristics of the original
MS image at a higher resolution. This condition entails that
both the features of each single channel and the mutual relations
among bands have to be preserved, justifying the original
articulation in two distinguished statements.

The definition of a technique that fulfills the constraints
defined in the protocol is still an open problem [6], [37] and
relates closely to the general discussion regarding image quality
assessment [38] and image fusion [39], [40]. Moreover, there
are additional issues linked to the lack of a universally accepted
evaluation index matching the human capability in assessing the
difference of two images. For example, the mean square error
(MSE) has been proven to be inadequate for this task [41],
which has given rise to the definition of many other indexes for
assessing the image quality (some are presented in Section III).
In addition, the unavailability of a reference high-resolution M'S
image precludes the evaluation of the results, regardless of the
chosen quality index. In order to face these aspects and perform
a quantitative evaluation of the results, two main solutions have
been proposed. The first relies on the reduction of the spatial
resolution of both the original MS and PAN images, and then,
the original MS image is used as a reference for the evaluation
of the results [8]. In this strategy, the invariance among scales of
the fusion procedures is assumed. This hypothesis is quite often
verified in practice but not always [36], [42]. The second em-
ploys indexes that do not require the availability of the reference
image [39], [40]. Clearly, in this case, the evaluation is done
at the native scale of the problem, but the results are strongly
dependent on the definition of such indexes.

The remainder of the paper is organized as follows: Section II
presents a review of the CS and MRA approaches, providing
a detailed description of some algorithms belonging to these
classes. Section III is devoted to describing the two assessment
procedures operating at reduced and full resolutions, intro-
ducing the related quality indexes. Extensive simulations are
reported in Section IV, together with a detailed discussion of
results. Finally, conclusions are drawn in Section V.

II. PANSHARPENING TECHNIQUES

The first goal of this work is the presentation and analysis
of some widely used methods presented in the technical liter-
ature. Due to their widespread use, they can be considered as
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TABLE 1
LIST OF THE MAIN ACRONYMS

Acronym | Description

MS MultiSpectral image
PAN PANchromatic image
HRMS High Resolution MS image
LRMS Low Resolution MS image
CS Component Substitution
MRA MultiResolution Analysis

TABLE 11
LIST OF THE MAIN SYMBOLS

Symbol | Description

MS MS image

MS MS image interpolated at the scale of PAN
P PAN image

MS Pansharpened image

R Spatial resolution ratio between MS and PAN
N Number of MS bands

reference state-of-the-art algorithms for pansharpening. They
can be grouped into two main classes, i.e., methods based on
CS and methods based on MRA. Before the two approaches
are described, the notation and conventions used in this paper
are introduced.

A. Notation

Tables I and II report the lists of the main acronyms and
symbols, together with a brief description. The other acronyms
and symbols will be defined within the paper upon need.

The notation and conventions used in the next sections
are detailed in the following. Vectors are indicated in bold
lowercase (e.g., x) with the ith element indicated as x;. Two-
and three-dimensional arrays are expressed in bold uppercase
(e.g., X). An MS image X = {Xy},_;  is a 3-D array
composed by /N bands indexed by the subﬁscyript k=1,...,N;
accordingly, X, indicates the kth band of X. A generic PAN
image is a 2-D matrix and will be indicated as Y.

B. CS

This family is based on the projection of the MS image
into another space, assuming that this transformation separates
the spatial structure from the spectral information in different
components [1]. Subsequently, the transformed MS image can
be enhanced by replacing the component containing the spatial
structure with the PAN image. Accordingly, the greater the cor-
relation between the PAN image and the replaced component,
the lower the distortion introduced by this fusion approach [1].
To this purpose, histogram matching of the PAN image to the
selected component is performed before the substitution takes
place. Thus, the histogram-matched PAN will exhibit same
mean and variance as the component to replace. Finally, the
pansharpening process is completed by bringing the data back
to the original space through the inverse transformation.

This approach is global (i.e., it operates in the same way
on the whole image), leading to advantages and limitations. In
greater details, techniques belonging to this class are usually
characterized by a high fidelity in rendering the spatial details
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Fig. 1. Flowchart presenting the blocks of a generic pansharpening procedure
based on the CS approach.

in the final product [43], and they are, in general, fast and easy
to implement. On the other side, they are not able to account
for local dissimilarities between the PAN and MS images
originated by the spectral mismatch between the PAN and MS
channels of the instruments, which may produce significant
spectral distortions [1], [6]. An alternative denomination of CS
is projection substitution [1], to emphasize the two main steps
of these techniques.

A new formalization of the CS approach was proposed by
Tu et al. [44] and then analyzed in subsequent works [43],
[45]-[47]. It was shown that, under the hypothesis of a linear
transformation and the substitution of a single component, the
fusion process can be obtained without the explicit calculation
of the forward and backward transformations, but through a
proper injection scheme. This observation leads to a faster
implementation of these methods. A general formulation of CS
fusion is given by

1\//I\Sk=1\//fék+gk(P—IL), k=1,...

N (D)

in which the subscript & indicates the kth spectral band, g =

[915--, 9K, ---,gn] is the vector of the injection gains, while
I, is defined as
N —_—
I, = Z w;MS; )
i=1
in which the weight vector w = [w1,...,w;,...,wy]| is the

first row of the forward transformation matrix and may be
chosen, whenever possible, to measure the degrees of spectral
overlap among the MS and PAN channels [1], [45].

Fig. 1 shows a flowchart describing the fusion process of the
CS approach. Specifically, it is possible to notice the presence
of blocks aimed at: 1) interpolating the MS image for matching
the scale of PAN; 2) calculating the intensity component by (2);
3) matching the histograms of the PAN image and the intensity
component; 4) injecting the extracted details according to (1).

For CS methods, interpolation must guarantee the overlap of
MS and PAN at the finer scale. Depending on the acquisition
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TABLE III
SPECTRAL WEIGHTS IN (2) AND INJECTION GAINS IN (1) FOR SEVERAL
CS-BASED METHODS. IN wy, ;, SUBSCRIPTS k AND 7 REFER TO
OUTPUT AND INPUT BANDS, RESPECTIVELY

Method | W5 \ 9k

THS 9] I/N(N=3) I

GIHS [44], [45], [46] any w; > 0 Cr w)!

BT [48] 1IN NI‘fk

PCA [11] X7 ; X 1
cov(I,,MS},)

GS [14] I/N e P

GSA [43] @; (Bq. 7) 7°°V<Vfif<f’/‘f'v)

BDSD [49] Wy, ;(Egs. (9)-(11)) Jx (Egs. (9)-(11))

PRACS [47] @; (Bq. 1) Egs. (13)-(19)

geometry of the imaging instruments, interpolation with con-
ventional zero-phase linear finite-impulse response filters may
require a manual realignment, e.g., after a bicubic interpolation.
Alternatively, linear nonzero-phase filters, having even numbers
of coefficients, may be profitably used [50].

The CS family includes many popular pansharpening ap-
proaches, such as the IHS [44], [45], PCA [10]-[12], and GS
[14], [43] methods, which differ by the projections of the MS
image used in the process. Due to the lack of a unique trans-
form for extracting the component most suited for substitution,
methods based on its adaptive estimation have been proposed;
they are known as adaptive CS [43], [49].

In the following, a more detailed description of the main
CS methods is presented. The values of the spectral weights
and injection gains indicated in (2) and (1) are summarized in
Table II1.

1) (G)IHS: The IHS pansharpening method [9], [10] ex-
ploits the transformation into the IHS color space that mimics
the human visual system in processing the intensity (I), hue
(H), and saturation (S) information. The IHS transform can
be only applied to RGB true color images, leading to a major
limitation for processing MS images. In [44], the authors have
generalized the concept of IHS to images with more than three
bands (GIHS). Subsequent studies [46] have proven that GIHS
can be formulated for any arbitrary set of nonnegative spectral
weights as follows:

N -1
MS), = MS;, + (Zw) (P-1;), k=1,....,N
=1
(3)

in which I; follows from (2). In general, the coefficients
_y are all equal to 1/N [44]. Alternatively, they can
be optimizéd to the responses of the spectral channels, i.e., MS
and PAN [45]. The spectral weights must be nonnegative and
may not sum to one. In that case, the injection gains provide the
proper rescaling [46]. THS (N = 3) may be implemented as a
fast THS, which avoids the sequential computation of the direct
transformation, substitution, and the final backward step. GIHS
is implicitly fast because the transformation does not exist
for N > 3.
In (1), setting the injection gains g, such that
MS;
gk = IL )

k=1,...,N 4)
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yields

MS P
: k-(P—IL):MSk-I— 5)
L L

MS), = MS;, +

which is the widely known Brovey transform (BT) pansharp-
ening method [48]. Thus, BT may be achieved by the general
model (1) with the choice of injection gains (4) and represents a
multiplicative sharpening, i.e., a spatial modulation of spectral
pixels.

The group of methods defined by (5), varying with the choice
of spectral weights in (2), is sometimes referred to as relative
spectral contribution (RSC) [1], [6]. In this paper, however,
following [7], all CS methods are considered as a unique class.
According to (1), RSC can be seen as a particular case of the
CS class since such methods can be formalized and exhibit the
same features as all CS methods [51].

2) PCA: PCA, also known as Karhunen-Loéve transform or
Hotelling transform [52], is another spectral transformation that
has been widely employed for pansharpening [10]-[12]. PCA
is achieved through a multidimensional rotation of the original
coordinate system of the /N-dimensional vector space, i.e., a
linear transformation of the data, such that the projection of the
original spectral vectors on the new axes, which are the eigen-
vectors of the covariance matrix along the spectral direction,
produces a set of scalar images, called principal components
(PCs), that are statistically uncorrelated to each other. PCs are
generally sorted for decreasing variance, which quantifies their
information content.

Specifically, the hypothesis underlying its use for pansharp-
ening is that the spatial information (shared by all the channels)
is concentrated in the first component (PC1), while the spectral
information (specific to each single band) is accounted by the
other N — 1 components. However, the equivalent spectral
response of PC1, i.e., the combination of the spectral responses
of the MS instrument according to the weights of the PCA
transformation, may not match the spectral response of the PAN
instrument. In fact, the spatial information is mapped to the first
component, to an extent proportional to the correlation among
the MS channels [6]. Again, the fusion process can be described
by the general formulation stated by (1), where the w and g
coefficient vectors are derived by the PCA procedure on the MS
image. In general [44], [46], w is the first row of the forward
transformation matrix; g is the first column of the backward
transformation matrix, which is equal to its transpose for PCA,
whose matrix X is data dependent.

3) GS: The GS orthogonalization procedure is the basis for
defining a powerful pansharpening method, which is patented
by its inventors [14] for Kodak and implemented in ENVI,
release 4.3 onward, as GS spectral sharpening. The GS trans-
formation is a common technique used in linear algebra and
multivariate statistics to orthogonalize a set of vectors.

Before the fusion process starts, the MS bands are interpo-
lated at the scale of PAN, and all images are lexicographically
ordered as vectors, whose dimension is the number of image
pixels at the scale of PAN. In addition, the mean (average) of
each band (now a vector) is subtracted from all the components
of the same vector. The orthogonalization procedure exploits a
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synthetic low-resolution approximation of the PAN image, i.e.,
I, as the first vector of the new orthogonal basis. GS orthog-
onalization proceeds one MS vector at the time, by finding its
projection on the (hyper)plane defined by the previously found
orthogonal vectors and its orthogonal component, such that the
sum of the orthogonal and projection components is equal to
the zero-mean version of the original vectorized band. Pan-
sharpening is accomplished by replacing I, with the histogram-
matched P before the inverse transformation is performed.
Therefore, GS constitutes an orthogonal decomposition more
general than PCA, which can be obtained by using the first
PC (PC1), instead of Iy, as starting vector [53]. The process
of finding projections and orthogonal components is formally
identical (orthogonal zero-mean vectors is formally equivalent
to uncorrelated components).

Since GS is a generalization of PCA, in which PC1 may be
arbitrarily chosen and the remaining components are calculated
to be orthogonal/uncorrelated to one another and to PC1, the
procedure may be still be described by the flowchart in Fig. 1.
Again, the fusion process is described by (1), with the injection
gains given by [43]

B cov(MS;, 1)

gk = , k=1,....,N

var(Iy,) ©
in which cov(X,Y) indicates the covariance between two
images X and Y, and var(X) is the variance of X.

Several versions of GS are achieved by changing the method
for generating Iy. The simplest way to obtain the low-
resolution approximation of PAN consists of simply averag-
ing the MS components (i.e., setting w; = 1/N, for all i =
1,...,N); this modality is simply called GS or GS mode 1
[14]. In [43], the authors proposed an enhanced version, called
adaptive GS (GSA), in which I, is generated by a weighted
average of the MS bands, with MSE-minimizing weights with
respect to a low-pass-filtered version of PAN, i.e.,

N

PL = Zwkmk
k=1

@)

The set of optimal weights {@},_, is calculated as the
minimum MSE (MMSE) solution of (7).

A further option for generating the low-resolution intensity
image Iy, entails the application of a low-pass filter (LPF) to
the original PAN image and is referred to as GS mode 2 [14],
leading to a hybrid approach, which is no longer based on CS
but actually belongs to the MRA-based class.

Other data-dependent self-adaptive approaches fall within
the class of CS methods and thus are briefly described in the fol-
lowing. The band-dependent spatial detail (BDSD) algorithm
[49] starts from an extended version of the generic formulation
(1) as follows:

N
1\//I\S;€:1\f/fsk+gk<P—Zwk,il\f/I§>, k=1,....N. (8)
=1

By defining the coefficients

{ m ifi=N+1
Vk,i =
—0k - Wk i

otherwise

€))
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equation (1) can be rewritten in compact matrix form as

MS,, = MS,, + H, (10)
in which H= [ml, e ,l\//IéN, P}, Y= ['7k,1> . ,’}/k’N+1}T

(all the images are organized by columns). The optimal MMSE
joint estimation of the weights-and-gains vector v would en-
compass the use of the unknown target image MS , and is thus
performed at a reduced resolution. Consequently, the solution
is found as

5. = (HIH,) 'HY (MS,-Ms,’) (b
in which H, is the reduced-resolution version of H, and l\f/i_sl,;P
is a version of l\A/Iék obtained through an LPF, whose spatial
frequency response matches the average modulation transfer
function (MTF) of the MS sensor.

In [47], the concept of partial replacement of the intensity
component is introduced. The PAN image is not directly used
for CS; instead, the algorithm utilizes Pk a weighted sum of
PAN and of the kth MS band, to calculate the kth sharpened
band in (1). For this reason, this method is referred to as partial
replacement adaptive CS (PRACS). For k=1,..., N, the
band-dependent high-resolution sharpening image is calcu-
lated as

P*® —CC(I, MSy) ~P+(1—CC(IL,1\TSk)> "MS, (12)

in which 1\//I§,k is the kth MS band histogram-matched to PAN,
CC(X,Y) is the correlation coefficient between X and Y,
and Iy is given by (2), where the weights wy, are obtained

through the linear regression of 1\7I/S/k, k=1,...,N,on Py,
i.e., the PAN image spatially degraded to the MS resolution.
The injection gains {gy } are obtained according to

std(MSy,)
& L std(MS;)

g = B-CC (P, MSy) (13)

According to [47], (13) is given by the product of: 1) an empiri-
cally tuned parameter /3 that normalizes the high frequencies,
so that they lie in the correct dynamic range; 2) a CC that
adjusts the relative magnitude of the high-frequency content,
with the purpose of minimizing the global dissimilarity between
the low-resolution image P(Lk), achieved by low-pass filtering
P*) and each MS band); 3) a scaling coefficient that takes into
account the spectral distortion due to differences in standard
deviations among the MS bands; 4) an adaptive factor Ly
defined as
__ MS,

Ly =1—|1—CC(I, MSy)—rt (14)
120

and aimed at removing the local spectral instability error be-
tween the synthetic component image and the MS band.

C. MRA

In the second class of pansharpening methods, the contri-
bution of the PAN image to the fused product is achieved by
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calculating the difference between P and a low-pass version
P . Namely, the HRMS image is defined as

MS;, = MS;, + g»(P—Pr), k=1,...,N. (15)
In [54], this paradigm has been denoted as Amélioration de la
Résolution Spatiale par Injection de Structures (ARSIS) to
highlight that the purposes of these methods are the preserva-
tion of the whole content of the LRMS image and the addition
of further information obtained from the PAN image, through
spatial filtering.

According to Tu et al. [44], who recast earlier wavelet-based
pansharpening methods into (15), the different approaches be-
longing to this class are uniquely characterized by the algorithm
employed for obtaining the image P ;, and by the injection gains
{9k o1, v

In a very general setting, P, is achieved through an iterative
decomposition scheme (called MRA) that aims at construct-
ing a sequence of 2-D signals with progressively reduced
information, through the repeated application of some analysis
operators. Information is regarded as spatial frequency content,
and thus, possibly increased sampling step sizes may be used
throughout the sequence; hence, the alternative name of pyra-
mid. The type of decomposition constitutes a first distinguish-
ing feature of the various approaches; it can range from very
simple methods based on a single level decomposition achieved
through a simple LPF to more complex techniques relying upon
a formal MRA.

The mathematical expression of g assumes different forms in
the literature. Noteworthy is the high-pass modulation (HPM)
method [55], relying on a multiplicative combination of MS and
PAN, which is defined, for k = 1,..., N, by

MS;,

L

MS;, = MS;, +

(P-Py)=MS; —  (16)
PL

in which the details are weighted by the ratio of the MS and
the PAN low-pass version P, before they are injected, with the
aim of reproducing the local intensity contrast of PAN in the
fused image [56]. Furthermore, if a unique low-pass image P,
is used for all the MS bands, i.e., if a unique filter or filter bank
is used to process PAN in order to extract the details that shall
be injected in all MS bands, this algorithm clamps the spectral
distortion of M'S, which can be quantified by the spectral angle
between fused and interpolated MS; thus, it is an element of the
spectral distortion minimization family [57].

The general scheme of MRA fusion methods is reported in
Fig. 2. Accordingly, the required blocks are devoted to: 1) inter-
polating the MS image to reach the PAN scale; 2) calculating
the low-pass version Py of the PAN image by means of the
equivalent filter for a scale ratio equal to R; 3) computing
the band-dependent injection gains {g;},_,  : 4) injecting
the extracted details according to (15). Note tflaf, apart from the
filter, there is difference if Py, is decimated—interpolated or not.
In the former case, corresponding to either GLP or DWT, it is
possible to compensate the aliasing of the MS image through
the fusion process [58].

Interpolation is less crucial than for CS methods, because if
the original data sets are intrinsically misaligned by constant
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Fig.2. Flowchart of a generic pansharpening algorithm belonging to the MRA

class. The switch on the low-pass-filtered PAN, i.e., P, enables a decimated
(GLP, DWT) or an undecimated (ATWT, UDWT) type of analysis.

TABLE IV
MRA-BASED PANSHARPENING METHODS AND RELATED
MRA SCHEMES WITH FILTERS AND INJECTION GAINS

Method [Type of MRA and Filter| gain g,
HPF [10] ATWT w/ Box Filter 1
HPM / SFIM [55] / [59], [60] | ATWT w/ Box Filter b
Indusion [61] DWT w/ CDF Bior. Filt. I
MTF-GLP [62] GLP w/ MTF Filter I
MTF-GLP-CBD [62] GLP w/ MTF Filter %
ATWT [56] ATWT w/ S&M Filter 1
ATWTI-M2 [54] ATWT w/ S&M Filter | _see [54]
ATWTI-M3 [54] ATWT w/ S&M Filter | _see [54]
MTF-GLP-HPM [57] GLP w/ MTF Filter ok
MTF-GLP-HPM-PP [47] GLP w/ MTF Filter MP—SL'z
AWLP [63] ATWT w/ S&M Filter |——ask___
N 2i—y MS;

values along rows and columns, e.g., by 1.5 pixels for 4:1 scale
ratio between MS and PAN (see [50]), the subsequent step may
realign the details extracted from PAN, provided that linear
nonzero-phase filters are used for MRA. Table IV reports a
brief summary of the MRA-based methods that have been im-
plemented, giving evidence to the paradigm used for calculat-
ing the injection gains required by (15) and the filtering scheme.

1) Low-Pass Filtering: The most direct implementation of
the ARSIS concept consists in applying a single linear time-
invariant LPF hyp to the PAN image P for obtaining P, thus
resulting in the following formula:

MSy, = MSy, + g (P —Psxhip), k=1,...,N (17
in which * denotes the convolution operator. This approach can
be performed by employing several different LPFs hjp, among
which the most diffused uses box, Gaussian, and Laplacian
masks [6].

Among the possible couples of filters and coefficients, we
chose the simplest scheme achievable by using the box mask
(i.e., a mask with uniform weights, implementing an average)
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and additive injection, which leads to the pansharpening algo-
rithm known as high-pass filtering (HPF) [10], [55].

The corresponding methodology employing the HPM injec-
tion scheme has been proposed in [59] and [60]; it is named
smoothing filter-based intensity modulation (SFIM).

2) Pyramidal Decompositions: The resolution reduction
needed to obtain the low-pass signal P at the original MS
scale can be performed in one or more steps, namely by
employing a single LPF with cut frequency equal to 1/R and
decimating by R, or by multiple fractional steps. This second
method, which includes the first as a particular case, is com-
monly referred to as pyramidal decomposition and dates back
to the seminal work of Burt and Adelson [20], which utilized
Gaussian LPFs to carry out the analysis steps. The correspond-
ing differential representation, achieved by calculating the dif-
ferences between the Gaussian pyramid levels, is named LP and
has later been proven to be very valuable for pansharpening pur-
poses [64]. Indeed, the Gaussian filters can be tuned to closely
match the sensor MTF. This allows extracting from the PAN
image those details, which are not seen by the MS sensor, due
to the coarser spatial resolution [62]. Since the Gaussian mask
is defined by a single parameter (i.e., its standard deviation), its
frequency response is fully specified by fixing it. To this aim,
the value of the amplitude response at the Nyquist frequency is
used, being commonly provided by the manufacturer as a sen-
sor specification, or obtained through on-orbit measurements.
However, it is useful to keep in mind that component aging
can induce a significant incertitude of this parameter, also in
the more favorable case of on-orbit estimation.

Both the general (15) and the signal-dependent injection
scheme (16) [65] have been used in the literature and im-
plemented in this work. They will be referred to as MTF-
Generalized LP (MTF-GLP) [62] and MTF-GLP with HPM
(MTF-GLP-HPM) [65], respectively. Following the indications
of the authors in [65], we also tested the MTF-GLP-HPM
method followed by a postprocessing (PP) phase aimed at cor-
recting the noise generated in the presence of discontinuities.
For the latter approach, whose details can be found in the cited
reference, we use here the acronym MTF-GLP-HPM-PP.

As a further example of Gaussian pyramids exploiting an
analysis filter matched with the MS sensor MTF, we consider
an algorithm that relies upon the optimization of the injection
coefficients by least square fitting. In particular, it is based on
(15), in which the coefficients are calculated as

B cov(mk,PL)
~ var(Pp)

where, in general, P, depends on the kth band. This injection
rule, also used by GS approaches [43], leads to a powerful
algorithm. It is commonly known as MTF-GLP with context-
based decision (MTF-GLP-CBD) [8], since the injection co-
efficient can be locally optimized by patching the image in
nonoverlapping zones. In fact, the consequent performance
improvement is reflected in terms of a significant increase in the
execution time.

In the same field, very appreciable results have been achieved
by employing wavelet and contourlet decomposition pyramids
[13], [66]. By focusing on the widely diffused wavelet decom-

gk (18)
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positions, the decimated Mallat’s method has been initially used
for this purpose [54], [67]. As an example of this class, we
selected for the comparison the more recent Indusion method
[61], which profits from multiple equalization steps to achieve
remarkable results.

However, the undecimated “a trous” method [68] has soon
emerged as a very effective method [69]. Indeed, even if nonor-
thogonality (which implies that a wavelet plane could retain
information for a neighboring plane) could compromise the
spectral quality of the fused product [69], its beneficial charac-
teristics such as the shift-invariance property [70] and the capa-
bility of being easily matched to the sensor MTF [62] produce
accurate pansharpened image. We adopt here a widely used
implementation of the “a trous” filter based on the sequential
application (due to the separability property), in the vertical and
horizontal direction, of 1-D filters [22], i.e.,

h=[14641] (19)
that derives from the choice of a B3 cubic spline as scaling
function [71] (also called Starck and Murtagh (S&M) filter).

In this case, here denoted as ATWT, choosing the signal-
dependent injection formula (16) for achieving the final product
leads to the formulation, as in [68]. Furthermore, alternative
implementations using the Model 2 and Model 3 [54] have been
added to the comparison as two further assessment methods and
named ATWT-M2 and ATWT-M3, respectively. They consist
in equalizing the first two moments of the details extracted by
the PAN images, before injection. In both cases, the mean and
the standard deviation of the PAN and MS wavelet coefficients
at the original MS scale are used. While Model 2 employs
a deterministic relation among the corresponding quantities,
Model 3 is optimized by least square fitting.

All the previous wavelet methods are based on the choice
of unitary injection coefficients {gx};_, . However, some
further improvements can be achieved by injecting the details
using the HPM paradigm (16) [56]. As an example of wavelet-
based method employing a different choice, we implemented
the additive wavelet luminance proportional (AWLP) [63] that
uses the more general fusion formula reported in (15), with the
injection coefficients defined as

MS;,

N
LY MS;

=1

gk , k=1,... (20)

III. QUALITY ASSESSMENT OF FUSION PRODUCTS

As in most data fusion problems, the absence of a reference
image is the main limitation for the evaluation of the results.
In the context of pansharpening, this lack prevents the direct
application of the Wald’s protocol. Thus, two assessment proce-
dures have been proposed in order to circumvent this problem.
The first one considers the images at a spatial resolution lower
than the original (induced artificially) and uses the original MS
image as a reference. Although this procedure allows for a
precise evaluation of the results with established indexes, qual-
itatively, there might be mismatches between the performances
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obtained at reduced resolution and the quality (interpreted by
visual inspection) for the fusion product at the original scale [4].
Indeed, the performances are intrinsically related to the way the
resolution degradation is performed, particularly in the case of
pansharpening methods exploiting spatial filters [7].

The second approach for validation uses quality indexes that
do not require a reference image but operate on the relationships
among the original images and the pansharpened product. This
approach is appealing since it operates directly on the data at
the native scale, but it is biased by the definition of the indexes.

Due to the suboptimality of both quantitative evaluation
procedures, a qualitative evaluation of the results through visual
inspection is still a necessary procedure for appreciating local
spectral distortions and precision in rendering the spatial details
in the fused images [8].

A. Reduced-Resolution Assessment

The procedure operating at reduced resolution is mainly
based on the Wald’s protocol [36] that is composed by the
following three requirements.

1) Any fused synthetic image 1\//I\Sk, where k ranges from 1
to the number of available channels N, once degraded to
its original resolution, should be as identical as possible to
the original image MS;,.

2) Any fused synthetic image 1\//I\Sk should be as identical
as possible to the image HRMSj; that the corresponding
sensor would observe with the highest resolution.

3) The MS set of synthetic images MS = {1\//1\81@},@:1"."1\,
should be as identical as possible to the MS set of images
HRMS;, = {HRMS;},_, y that the corresponding
sensor would observe with the highest resolution.

Considering the images at reduced resolution allows one to
easily check the synthesis property of the Wald’s protocol, ex-
pressed by the second and third statements, since all the
required quantities, namely, the fusing images, obtained by
degrading the available MS and PAN images, and the reference,
represented by the original MS image, are made accessible in
this way.

More in detail, the degradation of the resolution is obtained
by applying to the available MS and PAN images an LPF and
a decimation operator characterized by a sampling factor equal
to the resolution ratio between the two images. Let us denote
the reduced-resolution MS and PAN images by MS* and P*,
respectively.

Clearly, the choice of the filter is crucial in this validation
protocol. In general, the filter is defined for ensuring the consis-
tency (defined by the first Wald’s statement) of the pansharpen-
ing process. Since the pansharpened image (that here should
match as close as possible to the original image MS), once
degraded to its original resolution, should be identical to the
original MS image (whose part is acted by MS*), it comes
natural that the resolution reduction has to be performed by
employing a filter simulating the transfer function of the remote
sensor. In other terms, the degradation filter has to match the
MTF of the sensor [62]. In addition, the filter used for obtaining
the PAN image P* has to be designed, in order to preserve the
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details that would have been seen if the image were acquired at
the reduced resolution. Accordingly, it is commonly degraded
through an ideal filter [62].

Several indexes have been proposed for evaluating the spatial
and spectral distortions of the fused product, with respect to an
available reference image. According to Wald’s protocol, both
scalar (i.e., measurements on a single spectral band) and vector
(i.e., jointly considering all the spectral bands) (dis)similarity
indexes are required. The ones that are most widely used are
briefly described in the following.

Vector measures are useful to quantify the spectral distortion.
A simple index that has assumed a key role in the technical
literature is the Spectral Angle Mapper (SAM) [72], which
consists of calculating the angle between the corresponding
pixels of the fused and reference images in the space defined
by considering each spectral band as a coordinate axis. Let
Iy = [1,tn)> - - -» In {n}] be a pixel vector of the MS image
I with N bands, the SAM between Iy, and J;y is defined as
follows:

SAM (I, Jyiy) = arccos <<I{}J{}>> h
e | 19532

in which (-, -) denotes the scalar product (or inner product), and
||| denotes the vector ¢5-norm. The global value of SAM for
the whole image is obtained by averaging the single measures
over all the pixels. The optimal value of the SAM index is 0.

Other indexes account for spatial/radiometric distortions.
One of the most popular quantity is the root mean square error
(RMSE), which is defined as

RMSE(LJ) = /E[I-J)2.

The ideal value of RMSE is zero and is achieved if and only
if I = J. The main drawback of RMSE is that errors in each
band are not related to the mean value of the band itself.
Relative error measurements better match both visual analysis
criteria and model-based processing of MS pixel values, e.g.,
calculation of normalized differential vegetation index.

A more credited global index is the Erreur Relative Globale
Adimensionnelle de Synthése (ERGAS) that was properly pro-
posed for pansharpening in [73] and is defined as follows:

(22)

N 2
ERGAS — % 1 <RMSE(I’“’J’“)> (23)
1

N P (L)

where the RMSE is defined as in (22), and p represents the
mean (average on pixels) of the image. Since the ERGAS is
composed by a sum of RMSE values, its optimal value is 0.

Another (scalar) index, which was developed to overcome
some limitations of the RMSE, is the Universal Image Quality
Index (UIQI) or Q-index, proposed by Wang and Bovik [38].
Its physical interpretation becomes straightforward by writing
its expression in the form

20’10J

Q(I,J): 13 _ 21J

s (21 (2 ro) Y
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where opy is the sample covariance of I and J, and T is the
sample mean of I. Accordingly, it comprises, in the order, an
estimate of CC and the differences in the mean luminance and
in the contrast. The Q-index varies in the range [—1, 1], with 1
denoting the best fidelity to reference.

A vector extension of the (-index to vector data up to four
bands, which accounts also for spectral distortion, has been
proposed in [74]. In practice, the Q4 vector index can be used
with data sets composed by four spectral bands (e.g., blue,
green, red, and near infrared) and is based on modeling each
pixel I;y as a quaternion

Ly = Ly o + 1Ly 2 + 31y 3 + Kl 4 (25)

A generalization of the (Q4-index, suitable for the assessment
of images with a number of spectral bands greater than four, is
presented in [75] and is called Q2" -index.

B. Full-Resolution Validation

In order to perform the quality evaluation at the original
resolution of the data, the quality w/ no reference (QNR) index
[39] was proposed. The QNR index is defined as

QNR = (1-Dy)*(1— Dg)". (26)

It is thus composed by the product, weighted by the coefficients
« and 3, of two separate values D) and Dg, which quantify
the spectral and the spatial distortion, respectively. The higher
the QNR index, the better the quality of the fused product. The
maximum theoretical value of this index is 1, when both D)
and Dg are equal to 0.

The spectral distortion is estimated by

N N __p
SN |asms ) en

i=1 =15

1
Dy= 7| ———
A N(N =1)

where d; ;(MS, MS) = Q(MS;, MS;) — Q(MS;, MS;).

This formulation aims at producing a synthetic image with
the same spectral features of the original MS image. Accord-
ingly, the relations among the MS bands have to be preserved
during the enhancement procedure. The ()-index is used to
calculate the dissimilarities between couples of bands, and the
parameter p is typically set to one [39].

The spatial distortion is calculated by

1o s
Ds = ¢ N Z ’Q(MSnP) — Q(MS;, Prp) ' (28)
i=1

where Py p is a low-resolution PAN image at the same scale of
the MS image, and ¢ is usually set to one [39]. From a practical
point of view, the perfect alignment between the interpolated
version of the MS and the PAN images should be assured, to
avoid the loss of meaning for this quality index.

IV. EXPERIMENTAL RESULTS

This section is devoted to describing a set of experiments that
have been carried out on very high-resolution optical data. The
results have been validated at both full and reduced resolution,
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as described in the previous section. First, the data sets used in
the experiments are briefly presented along with a description of
the experimental setup. Successively, the experimental results
are reported and discussed.

A. Data Sets

Five data sets acquired by different sensors were considered.
Their characteristics are detailed in the following.

a) China data set: The data set! represents a mountainous
and vegetated area of the Sichuan region in China. The data
set has a size of 300 x 300 pixels. It is acquired by the
IKONOS sensor, which works in the visible and near-infrared
spectrum range; the MS sensor is characterized by four bands
(blue, green, red, and near infrared) and also a PAN channel is
available. The resolution cell is 4 m x 4 m for the MS bands
and 1 m x 1 m for the PAN channel. The resolution ratio R is
therefore equal to 4. The radiometric resolution is 11 bits.

b) Toulouse data set: This data set represents an urban
area of the city of Toulouse (France). The size is equal to 512 x
512 pixels. The sensor used to acquire the images is IKONOS,
and therefore, it has the same spectral and spatial characteristics
as in the previous case.

¢) Rome data set: This represents an urban area of the
city of Rome (Italy). The dimension of the image is 300 x
300 pixels. The data set has been acquired by the WorldView-2
sensor, which provides a high-resolution PAN channel and eight
MS bands. Four standard colors (red, green, blue, and near-
infrared 1) and four new bands (coastal, yellow, red edge,
and near-infrared 2) are acquired. Although the native spatial
resolution would be greater, the images are distributed with a
pixel size of 0.5 m and 2 m for PAN and MS, respectively.

The resolution ratio R is equal to 4, again. The radiometric
resolution is 11 bits.

d) Rio data set: This represents an urban area of the
city of Rio de Janeiro (Brazil). The dimension of the image
is 256 x 256 pixels. The data set has been acquired by the
WorldView-2 sensor, and therefore, it has the same instrumental
characteristics as in the previous case.

e) Pléiades data set: The Pléiades data set, collected by
an aerial platform, was used for the 2006 contest [8] and was
provided by CNES, the French Space Agency. This represents
an urban area of Toulouse (France), and it has a size of 1024 x
1024 pixels. The resolution of the four MS bands is 60 cm,
but the data set lacks the availability of the PAN image, since
the corresponding sensor was under development. Accordingly,
the high-resolution PAN data were simulated by the following
procedure. The green and red channels were averaged, and the
result was filtered with a system characterized by the nominal
MTF of the PAN sensor. After the resampling to 80 cm, thermal
noise was added, and the final simulated image was achieved by
inverse filtering and wavelet denoising. As a consequence, also
the low-resolution MS images were simulated according to the
Wald’s protocol, namely by MTF filtering and decimation. A
resolution ratio R of 4 was chosen. The radiometric resolution
is 11 bits.

IThe data set is available at http://glcf.umiacs.umd.edu.
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B. Algorithms

The algorithms used for the comparison are listed as follows.
It is worth highlighting that MRA requires injection gains dif-
ferent from unity because MS and PAN data sets are generally
not equalized, i.e., they are not expressed in the same units.
MRA methods in the literature employ their own injection gain
to equalize the contribution of PAN toinject into the MS [6], [59].

In this paper, we adopted a preprocessing step of PAN,
common to all methods that are compared, which consists of
creating as many PAN images as MS bands. Each new PAN im-
age is equalized to the corresponding MS band by matching the
two first moments of the two images before applying the fusion
algorithm.

Furthermore, when no authors’ specifications are provided,
the interpolation of the original MS image MS for generating
the interpolated image MS is carried out by using a polynomial
kernel with 23 coefficients [64], followed by manual realign-
ment by 1.5 pixels for data sets with even MS—PAN symmetry,
in practice all commercial products. Only in the simulated
Pléiades data set, the PAN image is simulated from the spectral
components of the 80-cm airborne instrument, before they are
spatially degraded to yield the simulated 2.4-m MS bands.
Hence, MS and PAN exhibit odd symmetry, and conventional
zero-phase interpolators can be used without any loss of align-
ment. Interested readers are addressed to [50] for more infor-
mation about the interpolation step.

¢ EXP: MS image interpolation, using a polynomial kernel
with 23 coefficients [64].

e THS: Fast Intensity-Hue-Saturation (GIHS)
fusion [44].

e BT: Brovey transform [48].

e PCA: Principal Component Analysis [10].

e BDSD: Band-Dependent Spatial-Detail with local param-
eter estimation [49].

e GS: Gram Schmidt (Mode 1) [14].

e GSA: Gram Schmidt Adaptive [43].

e PRACS: Partial Replacement Adaptive Component Sub-
stitution [47].

* HPF: High-Pass Filtering with 5 x 5 box filter for 1:4
fusion [10].

e SFIM: High-Pass Modulation with 5 x 5 box filter
[55], a.k.a. Smoothing Filter-based Intensity Modulation
(SFIM) [59], [60].

* Indusion: Decimated Wavelet Transform using an addi-
tive injection model [61].

* MTF-GLP: Generalized Laplacian Pyramid (GLP) [64]
with MTF-matched filter [62] with unitary injection model.

e MTF-GLP-HPM: GLP with MTF-matched filter [62] and
multiplicative injection model [57].

¢ MTF-GLP-HPM-PP: GLP with MTF-matched filter [62],
multiplicative injection model and Post-Processing [65].

* MTF-GLP-CBD: GLP [64] with MTF-matched filter [62]
and regression based injection model [8].

o ATWT: Additive A Trous Wavelet Transform with unitary
injection model [56].

e ATWT-M2: A Trous Wavelet Transform using the
Model 2 proposed in [54].

image
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* ATWT-M3: A Trous Wavelet Transform using the Model
3 proposed in [54].

* AWLP: Additive Wavelet Luminance Proportional [63], a
generalization of AWL [68] to more than three bands.

A more detailed description of the methods can be found in
the relative references or in Section II.

C. Wald’s Protocol

Three data sets are considered for evaluating the results at
reduced resolution: the China, Rome, and Pléiades data sets.
The results of the fusion are shown in Figs. 3-5. The quality
indexes used are the SAM (in degrees) to measure the spectral
distortion, the ERGAS, and Q2" (i.e., Q4 for four-band data
sets and 8 for the WorldView-2 data set). The quantitative
results obtained are reported in Tables V-VII.

A first analysis of the results can be done per family of
pansharpened algorithms. Among the CS approaches, the adap-
tive methods, namely, the BDSD and PRACS, achieve the best
performances with a good visual appearance of the final prod-
ucts and a reduced spectral distortion with respect to the other
members of this family. They are followed by the GS, PCA, and
IHS approaches, which are ranked in this order for most of the
data sets and the quality indexes. However, only for the case of
vegetated area, i.e., the China data set, the PCA gives slightly
better results than the GS algorithm. More in general, PCA-
and THS-based approaches produce results with larger spectral
distortion (see the greater values of the SAM) since it can also
be confirmed by the visual inspection.

A more detailed analysis can be done within the algorithms
based on GS orthogonalization. In fact, GSA shows its supe-
riority with respect to the GS, due to its adaptive estimation
of the weights for generating the equivalent PAN from the MS
image.

Considering the techniques belonging to the MRA family,
the best accuracy is obtained by decimated approaches (e.g.,
LPs), particularly for urban areas, due to a greater robustness to
aliasing with respect to undecimated methodologies, such as the
“a trous” wavelet transform. However, very good performances
for both the aforementioned approaches can be attributed to the
similarity of the frequency response of the filters with that of
the MS sensor MTF [62]. Meanwhile, the application of the
box filter leads to poorer performances. This is mainly caused
by the spatial artifacts due to the presence of ripples in the
obscure band in the representation of this filter in the frequency
domain and its greater dissimilarity with respect to the transfer
function of the acquisition device. Even in the case of Indusion,
severe artifacts introduced by the decimation can be noticed
(see Figs. 3-5).

With regard to the injection methodologies, the multiplica-
tive injection model turns out to be better suited than the
additive injection model. This can be explained by the greater
flexibility of the former in setting the local weights that govern
the detail injection and its close relationship with local contrast
of the image [56].

ATWT-M2 and ATWT-M3 [54] do not lead to high per-
formances, both from numerical and visual (leading to more
blurred result) points of view, when compared to the other
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Fig. 3. China data set: (a) Reference Image; (b) EXP; (c) PCA; (d) IHS; (e) BT; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (1) Indusion;
(m) ATWT; (n) AWLP; (0) ATWT-M2; (p) ATWT-M3; (q) MTE-GLP; (r) MTF-GLP-HPM-PP; (s) MTF-GLP-HPM; (t) MTF-GLP-CBD.

approaches that use the same detail extraction filters but dif- iterative application of MTF-based filters and nonideality of the
ferent injection methodologies. Finally, it is worth underlining interpolation. Furthermore, MTF-GLP-CBD shows comparable
that the results of the MTF-GLP-HPM-PP method are, in performances, with respect to additive injection models, and it
general, poorer than those obtained by MTF-GLP-HPM with  represents the best choice when we deal with data with lower
no gain due to the PP phase and drawbacks provided by the signal-to-noise ratio (i.e., the Pléiades data set).
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Fig. 4. Rome data set: (a) Reference Image; (b) EXP; (c) PCA; (d) IHS; (e) BT; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (1) Indusion;
(m) ATWT; (n) AWLP; (0) ATWT-M2; (p) ATWT-M3; (q) MTF-GLP; (r) MTF-GLP-HPM-PP; (s) MTE-GLP-HPM; (t) MTF-GLP-CBD.

In general, the application of a preprocessing, such as the
matching of the two first moments of the PAN image with those
of each MS band, improves the performances of some MRA
algorithms (e.g., approaches based on additive and multiplica-
tive injection models), which do not consider a proper injection

model to enhance the MS product after the extraction of the
spatial details of the PAN image (i.e., they inject the extracted
details in the same way for all the bands).

Finally, we compare the CS and MRA families. The former
often shows a higher spectral distortion, but a better visual



VIVONE et al.: CRITICAL COMPARISON AMONG PANSHARPENING ALGORITHMS

(@ (®

2577

Fig. 5. Pléiades data set: (a) Reference Image; (b) EXP; (c) PCA; (d) IHS; (e) BT; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (1) Indusion;
(m) ATWT; (n) AWLP; (0) ATWT-M2; (p) ATWT-M3; (q) MTF-GLP; (r) MTF-GLP-HPM-PP; (s) MTF-GLP-HPM; (t) MTF-GLP-CBD.

appearance of the final product. The latter has opposite charac-
teristics with a higher spatial distortion but a superior spectral
consistency, as shown by the quality indexes and the visual
inspection. Accordingly, the overall results are comparable, par-
ticularly when considering images of four bands. Approaches

such as BDSD and PRACS often obtain comparable results,
with respect to the best performing MRA algorithms, and they
usually represent the best choice. On the contrary, in the case
of the Rome data set acquired by WorldView-2 (i.e., an eight-
band data set), in general, the gap among algorithms within the
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TABLE V
CHINA DATA SET: QUANTITATIVE RESULTS

| Q4 [ SAM(°) [ ERGAS [ Time[s]
Reference | 1 | 0 | 0 [ 0
EXP | 0.7398 | 4.4263 | 3.8471 | 0
PCA 0.8578 3.5433 2.6715 0.1189
IHS 0.7308 4.9892 3.5766 0.0079
BT 0.7314 4.4263 3.1722 0.0053
BDSD 0.8869 29123 2.4124 0.1146
GS 0.8500 3.5304 2.7982 0.0347
GSA 0.8756 2.9889 2.5521 0.0872
PRACS 0.8793 3.1514 2.5745 0.1355
HPF 0.8704 3.2533 2.6156 0.0228
SFIM 0.8730 3.2031 2.5778 0.0213
Indusion 0.8043 3.9059 3.2846 0.0457
ATWT 0.8791 3.0786 2.5178 0.0978
AWLP 0.8830 2.9424 2.4073 0.1031
ATWT-M2 0.8021 4.,0493 3.2930 0.2790
ATWT-M3 0.8198 4.3388 3.3357 0.2888
MTF-GLP 0.8787 3.0387 2.5106 0.0683
MTF-GLP-HPM-PP | 0.8643 3.3030 2.7540 0.1444
MTF-GLP-HPM 0.8819 3.0041 2.4624 0.0626
MTF-GLP-CBD 0.8780 2.9673 2.5067 0.0702

TABLE VI
ROME DATA SET: QUANTITATIVE RESULTS

| Q8 [ SAM(°) | ERGAS [ Timels]
Reference [ 1 | 0 | 0 | 0
EXP | 0.7248 \ 4.9263 | 54171 | 0
PCA 0.8169 5.2153 44128 0.0939
IHS 0.7439 5.1455 4.1691 0.0076
BT 0.7487 4.9263 4.1407 0.0051
BDSD 0.8762 4.8717 3.8619 0.0997
GS 0.8335 4.8592 4.0144 0.0487
GSA 0.8907 4.1415 3.4062 0.0990
PRACS 0.8878 4.6678 3.6768 0.3215
HPF 0.8889 42813 3.5459 0.0341
SFIM 0.8950 4.0874 3.3979 0.0306
Indusion 0.8030 5.1415 4.8864 0.0700
ATWT 0.9013 41117 3.3237 0.1906
AWLP 0.9011 4.5146 3.3572 0.2013
ATWT-M2 0.7969 5.0277 4.6487 0.5510
ATWT-M3 0.8379 5.1042 4.3684 0.5734
MTF-GLP 0.9016 4.0957 3.2982 0.1142
MTF-GLP-HPM-PP | 0.8900 4.3736 34777 0.2228
MTF-GLP-HPM 0.9092 3.8871 3.1005 0.1170
MTF-GLP-CBD 0.8940 41125 3.3479 0.1260

two families slightly increases with a greater appeal of MRA-
based ones. In the CS family, only the adaptable approaches
(i.e., GSA, BDSD, and PRACS) attain reasonable performances
due to the correct estimation of the weights needed to generate
the intensity component.

D. Full-Resolution Validation

The evaluation of the algorithms at the original resolution of
the images was on the Toulouse and Rio data sets. In Figs. 6
and 7, the fusion results of a small area are shown by using
an RGB representation. Tables VIII and IX report the values of
the QN R, D), and Dg. Many results obtained in the analysis
performed at reduced resolution are in line with those obtained
at full resolution. In particular, the algorithms within the MRA
category performing the best are those based on Gaussian and
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TABLE VII
PLEIADES DATA SET: QUANTITATIVE RESULTS

[ Q4 [ SAMC) [ ERGAS | Time[s]
Reference | 1 | 0 | 0 \ 0
EXP [0.7782 | 46742 | 60826 | 0O
PCA 0.8122 6.1435 6.0028 0.3840
IHS 0.8381 5.1788 5.0549 0.0444
BT 0.8411 4.6742 5.1506 0.0428
BDSD 0.9650 4.0749 2.7811 0.3688
GS 0.8448 5.3304 5.0468 0.3197
GSA 0.9572 4.4449 3.0013 0.7095
PRACS 0.9325 4.5157 3.6523 1.6298
HPF 09300 | 43125 | 3.7140 | 02469
SFIM 090284 | 42727 | 37128 | 0488
Indusion 0.8251 | 58322 | 5.6366 | 04018
ATWT 09479 | 4.1401 | 33157 | 15061
AWLP 00426 | 43356 | 35219 | 1.5550
ATWT-M2 0.8300 5.1505 5.4053 4.5053
ATWT-M3 0.8612 5.2915 5.0569 4.6316
MTF-GLP 0.9485 4.1529 3.3193 0.6176
MTF-GLP-HPM-PP | 0.8786 5.2343 5.1103 1.0945
MTF-GLP-HPM 0.9488 4.1541 3.2741 0.6082
MTF-GLP-CBD 0.9549 4.4459 3.1521 0.6356

“a trous.” The superiority of the multiplicative injection scheme
evidenced at reduced resolution is still confirmed here. Within
the CS family, the best techniques in terms of obtained accuracy
are the adaptive algorithms followed by the other CS ap-
proaches. As for the reduced resolution, the difference in accu-
racy between the two main families is more evident in the case
of the eight-band Rio data set. Again, the algorithms based on IHS
show a higher spectral distortion confirmed by the values of D).

It is worth pointing out that the PCA- and IHS-based ap-
proaches perform very well from a quantitative point of view,
but this conclusion is not fully confirmed by the visual analysis
since the pansharpened images are more spectral distorted if
compared to the results of other approaches. Furthermore, a
slightly lower accuracy of the full resolution validation proce-
dure can be noted for the Rio data set. Indeed, for instance, the
GS works better than the GSA and the AWLP led to lower per-
formances, with respect to the results at reduced resolution and
the visual interpretation. This is mainly due to the acquisition
modality of the WorldView-2 sensor, which captures scenes in
eight MS bands arranged in two arrays of four bands each [76].
In fact, it causes misalignment among MS data that affects the
effectiveness of the QNR index.

The obtained results give rise to some general considerations.
Indeed, the validation at full resolution allows avoiding some
issues and assumptions necessary for the reduced-resolution
protocol, but the values of the indexes are less reliable (since
discrepancies between the quantitative values and the visual
appearance of the results can be noticed). In more detail, the
comparison of algorithms, in terms of the QNR index, is quite
accurate within each category. However, it is more difficult to
quantify the existing differences among algorithms belonging
to different families.

E. Summary and Discussion

The obtained results give evidence that the good visual
appearance and the spectral content preservation represent the
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Fig. 6. Toulouse data set: (a) PAN; (b) EXP; (c) PCA; (d) IHS; (e) BT; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (1) Indusion; (m) ATWT;
(n) AWLP; (0) ATWT-M2; (p) ATWT-M3; (q) MTF-GLP; (r) MTE-GLP-HPM-PP; (s) MTF-GLP-HPM; (t) MTE-GLP-CBD.

main salient features of the CS and MRA methods, respectively.
Accordingly, approaches of the first class aimed at improving
the spectral quality and those of the second class properly
designed for enhancing the spatial properties obtain the best
results. Indeed, very interesting performances are attained by

adaptive CS approaches (in particular, on four-band data sets),
with the reduction of the spectral distortion, and by some MRA
algorithms, which benefit from proper detail extraction. In par-
ticular, the match of the LPF with the sensor MTF allows sig-
nificantly reducing the classical blur of the MRA final products.
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Fig. 7. Rio data set: (a) PAN; (b) EXP; (c) PCA; (d) IHS; (e) BT; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (1) Indusion; (m) ATWT;
(n) AWLP; (0) ATWT-M2; (p) ATWT-M3; (q) MTF-GLP; (r) MTE-GLP-HPM-PP; (s) MTF-GLP-HPM; (t) MTE-GLP-CBD.

Another interesting consideration arises from the performed
tests. Specifically, for the case of eight-band data sets, degra-
dation of the performances for certain CS approaches is clear
from both a numerical and visual point of view. This is mainly
due to the larger spectral distortion affecting the results. This

can be justified by the larger spectral misalignments between
the MS and the PAN spectra and by the acquisition modality of
the sensor (it captures scenes in eight MS bands arranged in two
arrays of four bands each [76]). In fact, this acquisition modal-
ity can lead to small temporal misalignments among MS data,
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TABLE VIII
TOULOUSE DATA SET: QUANTITATIVE RESULTS

\ Dy \ Dg | QNR | Time[s]
Reference | 0 \ 0 ] 1 | 0
EXP } 0 \ 0.1975 | 0.8025 | 0
PCA 0.0114 | 0.0991 | 0.8906 | 0.1320
IHS 0.0367 | 0.0591 | 0.9063 0.0157
BT 0.0164 | 0.0579 | 0.9266 | 0.0133
BDSD 0.0079 | 0.0404 | 0.9520 | 0.0900
GS 0.0111 | 0.0912 | 0.8987 0.0795
GSA 0.0364 | 0.0555 | 0.9101 0.1859
PRACS 0.0137 | 0.0612 | 0.9259 0.3877
HPF 0.0301 | 0.0570 | 0.9146 | 0.0631
SFIM 0.0276 | 0.0561 | 0.9179 0.0622
Indusion 0.0274 | 0.0795 | 0.8952 | 0.1033
ATWT 0.0348 | 0.0428 | 0.9239 0.3491
AWLP 0.0412 | 0.0392 | 09212 | 0.3587
ATWT-M2 0.0303 | 0.0975 | 0.8752 | 0.9989
ATWT-M3 0.0544 | 0.0725 | 0.8771 1.0206
MTF-GLP 0.0384 | 0.0406 | 0.9225 0.1710
MTF-GLP-HPM-PP | 0.0440 | 0.0407 | 09171 0.3075
MTF-GLP-HPM 0.0338 | 0.0383 | 0.9292 | 0.1611
MTF-GLP-CBD 0.0401 | 0.0484 | 09134 | 0.1670

TABLE IX
R10 DATA SET: QUANTITATIVE RESULTS

| Dy \ Dg | QNR | Time[s]
Reference [ O \ 0 ] 1 | 0
EXP | 0 \ 0.0940 | 0.9060 | 0
PCA 0.0265 | 0.0582 | 0.9168 0.0857
IHS 0.0454 | 0.0560 | 0.9012 | 0.0080
BT 0.0326 | 0.0615 | 0.9080 | 0.0054
BDSD 0.0272 | 0.0347 | 0.9390 | 0.0672
GS 0.0261 | 0.0579 | 0.9176 | 0.0359
GSA 0.0369 | 0.0552 | 0.9100 | 0.0818
PRACS 0.0158 | 0.0647 | 0.9205 0.2506
HPF 0.0275 | 0.0527 | 09212 | 0.0297
SFIM 0.0261 | 0.0539 | 0.9215 0.0260
Indusion 0.0258 | 0.0600 | 0.9157 0.0653
ATWT 0.0361 | 0.0474 | 09182 | 0.1397
AWLP 0.0399 | 0.0568 | 0.9056 | 0.1484
ATWT-M2 0.0246 | 0.0906 | 0.8870 | 0.4270
ATWT-M3 0.0405 | 0.0713 | 0.8911 0.4396
MTF-GLP 0.0359 | 0.0421 | 0.9235 0.1060
MTF-GLP-HPM-PP | 0.0525 | 0.0533 | 0.8970 | 0.1834
MTF-GLP-HPM 0.0348 | 0.0423 | 0.9244 | 0.0962
MTF-GLP-CBD 0.0375 | 0.0416 | 0.9225 0.0961

which, although partially compensated, affect the effectiveness
of the linear regression step usually exploited by the most
powerful CS-based methods. For these reasons, the use of MRA
approaches is, in general, as much advisable as the number of
the bands gets greater.

Furthermore, it is worth underlining that CS approaches are
often preferable, with respect to the MRA ones, due to their
robustness to aliasing and misregistration errors. In fact, since
they employ an aliasing-free version of the PAN image, the
fusion rule adopted by the CS algorithms is able to compensate
the aliasing present in the MS image. On the contrary, the alias-
ing patterns are visible when the MRA fusion rule is adopted
[51]. However, such problem can be strongly reduced by em-
ploying MRA decimated approaches whose analysis filter is
matched with the MTF of the MS sensor, as obtainable by prop-
erly designing LPs [58]. Temporal misalignments suggest the
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TABLE X
REDUCED-RESOLUTION TOULOUSE DATA SET: QUANTITATIVE RESULTS

[ Q4 [ SAM(°) | ERGAS
Reference | 1 | 0 [ 0
EXP [ 04471 | 48218 | 64997
PCA 0.7466 3.9984 4.7532
IHS 0.7539 4.5023 4.9580
BT 0.7453 4.8218 5.0976
BDSD 0.9440 2.0005 2.3237
GS 0.7490 4.0063 4.7584
GSA 0.9353 2.0822 2.3892
PRACS 0.9370 2.3895 2.4377
HPF 0.8258 3.5976 41117
SFIM 0.8331 3.5878 3.9856
Indusion 0.7496 3.9087 47472
ATWT 0.8510 3.4438 3.8901
AWLP 0.8542 3.9489 4.1197
ATWT-M2 0.6140 4.2949 5.4643
ATWT-M3 0.7483 4.2257 4.8739
MTF-GLP 0.8649 3.3678 3.7513
MTF-GLP-HPM-PP | 0.8330 3.7058 4.0392
MTF-GLP-HPM 0.8758 3.3658 3.5523
MTF-GLP-CBD 0.9350 2.0851 2.3795

TABLE XI

REDUCED-RESOLUTION RIO DATA SET: QUANTITATIVE RESULTS

[ Q8 | SAM(°) | ERGAS
Reference [ 1 | 0 ‘ 0
EXP (06777 | 32843 | 50147
PCA 0.9017 2.5582 2.8980
THS 0.8798 3.3457 3.1985
BT 0.8677 3.2843 3.0479
BDSD 0.8902 2.9798 2.9889
GS 0.9002 2.5672 29144
GSA 0.9286 2.1496 2.1178
PRACS 0.9363 2.5438 2.1188
HPF 0.9270 2.3713 2.3908
SFIM 0.9272 2.4329 2.3350
Indusion 0.8800 2.5508 3.7205
ATWT 0.9418 2.2471 1.9419
AWLP 0.9308 3.4671 2.4004
ATWT-M2 0.8426 3.0265 3.7720
ATWT-M3 0.8803 3.0677 3.3642
MTF-GLP 0.9427 2.2151 1.8878
MTF-GLP-HPM-PP | 09270 2.5411 2.3516
MTF-GLP-HPM 0.9426 2.3141 1.8834
MTF-GLP-CBD 0.9302 2.0906 2.0705

use of MRA methodologies, with respect to CS ones [77]. This
kind of robustness turns out to be very helpful when the images
are acquired with a time delay, e.g., when they are provided
from sensors mounted on different remote sensing platforms.
From a computational point of view, the CS approaches are
surely preferable to the MRA ones since the filtering phase
significantly slows down the algorithms. According to our tests,
which were performed on a 3.20-GHz Pentium i7 Processor, the
former ones are about ten times faster than the latter ones, as
evidenced by the computational times reported in Tables V-IX.
Final considerations arise from the comparison of the algo-
rithms at reduced and full resolution. To this aim, we assessed
the performances of the analyzed methods at reduced resolution
also with the reference used in the full resolution analysis for
the Toulouse and Rio data sets. The obtained quantitative results
at reduced and full resolution are reported in Tables VIII-XI,
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TABLE XII

K-MEANS (K = 3) CLUSTERING OF PANSHARPENING ALGORITHMS APPLIED TO IKONOS DATA INTO HIGH, MEDIUM,
AND LOW PERFORMANCE. INPUT DATA FOR CLUSTERING ARE THE REDUCED-RESOLUTION SCORE INDEXES
IN TABLE X (LEFT) AND THE FULL-RESOLUTION SCORE INDEXES IN TABLE VIII (RIGHT)

High Medium Low High | Medium \ Low
BDSD MTF-GLP-HPM THS BDSD MTF-GLP-HPM GS
PRACS MTF-GLP Indusion PRACS BT Indusion
GSA AWLP GS ATWT PCA
MTF-GLP-CBD ATWT ATWT-M3 MTF-GLP ATWT-M3
SFIM PCA AWLP ATWT-M2
MTF-GLP-HPM-PP BT SFIM
HPF ATWT-M2 MTF-GLP-HPM-PP
HPF
MTF-GLP-CBD
GSA
THS
TABLE XIII

K-MEANS (K = 3) CLUSTERING OF PANSHARPENING ALGORITHMS APPLIED TO WORLDVIEW-2 DATA INTO HIGH, MEDIUM,
AND LOW PERFORMANCE. INPUT DATA FOR CLUSTERING ARE THE REDUCED-RESOLUTION SCORE INDEXES
IN TABLE XI (LEFT) AND THE FULL-RESOLUTION SCORE INDEXES IN TABLE IX (RIGHT)

High | Medium | Low High | Medium | Low
MTF-GLP SFIM ATWT-M3 BDSD GS BT
MTF-GLP-HPM HPF Indusion MTF-GLP-HPM PCA AWLP
ATWT PRACS IHS MTF-GLP Indusion IHS
AWLP PCA BT MTF-GLP-CBD GSA MTF-GLP-HPM-PP
MTF-GLP-CBD GS ATWT-M2 SFIM ATWT-M3
MTF-GLP-HPM-PP BDSD HPF ATWT-M2
GSA PRACS
ATWT
respectively. For these two data sets, we grouped the pansharp- 10 w .
. . . . . ® Occurrences vs. Q4
ening algorithms into three classes according to their perfor- - paiseian g /\
mances (i.e., high-, medium-, and low-performance methods). 8
The results of this partition are shown in Tables XII and XIII,
referring to the IKONOS and WorldView-2 data sets, respec- 8 6 n
tively. The obtained clusters correspond to a rather natural &
classification, as testified, for example, by the analysis of the § i
@4 histogram shown in Fig. 8 for the IKONOS case, which is  © \
reasonably described by a three-mode distribution. Analogous
considerations can be done both for the QNR index distribution 2
and for the WorldView-2 case. Analogously, the 18 consid- . // \ \/
ered algorithms are automatically grouped into high-, medium- 0
0.65 0.7 0.75 0.8 0.85 0.9
and low-performance methods through the K -means procedure Q4
starting from the score indexes computed at reduced resolution
in Tables X and XI, and at full resolution in Tables VIII and IX, Fig. 8. Gaussian fitting of histogram of 4 in Table X.

which have been conveniently normalized with respect to
their corresponding maximum values. The methods inside each
group are subsequently ordered according to the values of the
Q2" at reduced resolution, while at full resolution, the QNR
is considered. This simple and automatic procedure allows one
to easily identify the pansharpening methods that perform best
for each sensor. The good match between the performances
evaluated for both validation protocols can be appreciated.
Indeed, the majority of the algorithms belong to the same
performance class at the reduced and full resolution validation.
Furthermore, it is worth pointing out that the worst and the
best approaches are quite sensor independent. For instance,
earlier methods, such as PCA, GS, ATWT-M2, and ATWT-M3,
are poorly performing when considering images acquired by
both the IKONOS and WorldView-2 sensors. Whereas more

advanced ones, such as BDSD and MTF-GLP-CBD, evince
their superiority, regardless of the sensors. Moreover, from this
classification, it is again possible to assess the superiority of
the MRA approaches, with respect to the CS ones, for the
WorldView-2 data set.

The analysis carried out in this work allowed us to con-
firm some features of the validation procedures: The reduced-
resolution protocol leads to a very accurate evaluation of the
quality indexes, but the scale invariance hypothesis is not al-
ways verified in practice. Furthermore, the operation for gener-
ating a synthetic version of the MS image at reduced resolution
introduces a strong bias in the analyzed algorithms, privileging
those employing a similar procedure for extracting the spatial
details. On the contrary, the full resolution validation gets quite



VIVONE et al.: CRITICAL COMPARISON AMONG PANSHARPENING ALGORITHMS

accurate results, with respect to algorithms of the same family,
whereas being less reliable when the comparison includes algo-
rithms belonging to different classes. This validation approach,
which exploits the QNR index, has the advantage of validating
the products at the original scale, thus avoiding any hypothesis
on the behavior at different scales. However, due to the lower
reliability of the quality indexes (since a reference is missing),
the results of this analysis can be affected by some mismatches
between the quantitative results and the visual appearance of
the fused image (e.g., for the IHS method).

V. CONCLUSION

In this paper, a comparison among several pansharpening
algorithms presented in the literature has been performed.
Specifically, a hard classification of methods into two main
families, i.e., based on CS or MRA, has been adopted, and some
widely used algorithms belonging to these families have been
described and evaluated through extensive simulations.

Due to the differences in spectral and spatial characteristics
of the products to fuse, the validation of the final product repre-
sents a difficult task. For this reason, the paper has been focused
on the validation of pansharpening products. The different
behaviors of the same algorithms under different validation
procedures, on data sets acquired by different satellites, have
been described. The two approaches currently considered in the
literature for the assessment, i.e., analysis at reduced and at full
resolutions, have been considered. The former follows Wald’s
protocol checking the synthesis property. To this aim, the orig-
inal image is used as a reference, whereas the pansharpening
algorithms are applied to reduced-resolution versions. Due to
the availability of a target product, quality indexes quantifying
the similarity of the fused product to its reference can be em-
ployed. Typically, indexes taking into account both radiometric
and spectral distortions, e.g., 4 and its extension (2", are
preferable in this phase. On the contrary, the full-resolution
validation protocol avoids reducing the resolution of the input
images. Thus, since no reference image can be considered, ap-
propriate indexes requiring no reference have to be exploited to
verify the accuracy of the final product, e.g., the QNR protocol.

The particular characteristics of the two classes of pan-
sharpening algorithms have been evidenced during the assess-
ment phase. Specifically, the visually appealing features of
CS methods have been highlighted by the absence of aliasing
impairments. Such a favorable characteristic, together with the
robustness of these methods to the errors induced by possible
misregistration between the available MS and PAN data sets
and a relatively low computational burden, has supported their
widespread use. On the other side, very good overall perfor-
mances are generally attained by MRA methods, which are
characterized by a superior reproduction of the MS features
and can be easily designed to match the behavior of the MS
sensor for the extraction of spatial details. Furthermore, this
class of algorithms is currently drawing an increasing attention;
due to their temporal coherence, they can be employed for
multiplatform data fusion.

The simulations presented in this paper have been performed
by a MATLAB implementation of the algorithms, quality in-

2583

dexes, and validation procedures. The authors have chosen to
make the MATLAB toolbox that they have developed available
to the community. This allows for fair and easy comparisons
with some of the most widely used state-of-the-art algorithms.
They also hope that this toolbox could foster the development
and validation, through the benchmarking with established
algorithms on standardized data sets, of novel and ever more
performing pansharpening methods.
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