• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Classification of Hyperspectral Images/Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields

Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields

February 16, 2015

Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields
Junshi Xia ; Chanussot, J. ; Peijun Du ; Xiyan He

Geoscience and Remote Sensing, IEEE Transactions on
Volume: 53 , Issue: 5
DOI: 10.1109/TGRS.2014.2361618
Publication Year: 2015 , Page(s): 2532 – 2546

The implementation of the random forests is based on the freely available software “Weka”:
http://www.cs.waikato.ac.nz/~ml/weka/

Tags:feature extractionhyperspectral image classificationMarkov random fields (MRFs)rotation forests
Attached Files
#
File Type
File Size
Download
1 .pdf 2.27 MB IEEE_TGRS_2015_Xia_random_forests
Related Articles
  • More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification
  • Graph Convolutional Networks for Hyperspectral Image Classification
  • CoSpace: Common Subspace Learning from Hyperspectral-Multispectral Correspondences
  • Learnable Manifold Alignment (LeMA) : A Semi-supervised Cross-modality Learning Framework for Land Cover and Land Use Classification
  • Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification
  • Class-Specific Sparse Multiple Kernel Learning for Spectral–Spatial Hyperspectral Image Classification
Categories
  • CODES
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Pansharpening
    • Registration
    • Sequences
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
    • Tensor
  • DATA
Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net