• Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
  • Home
  • CODES
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Pansharpening
    • Registration
    • Spectral Unmixing
  • DATA
  • About us
home/Knowledge Base/CODES/Spectral Unmixing/Empirical Automatic Estimation of the Number of Endmembers in Hyperspectral Images

Empirical Automatic Estimation of the Number of Endmembers in Hyperspectral Images

April 23, 2018

Empirical Automatic Estimation of the Number of Endmembers in Hyperspectral Images
Bin Luo; Jocelyn Chanussot; Sylvain Doute; Liangpei Zhang

IEEE Geoscience and Remote Sensing Letters
Year: 2013, Volume: 10, Issue: 1
Pages: 24 – 28

 

 

Tags:imagingspectral analysis
Attached Files
#
File Type
File Size
Download
1 .pdf 556.68 KB Empirical automatic estimation of the number of endmembers in hyperspectral images
2 .zip 1.47 KB det_number.m
3 .rar 988.00 B ELM
Related Articles
  • Blind Hyperspectral Unmixing Based on Graph Total Variation Regularization
  • An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing
  • Hyperspectral Image Unmixing With Endmember Bundles and Group Sparsity Inducing Mixed Norms
  • Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation
  • RCMF: Robust Constrained Matrix Factorization for Hyperspectral Unmixing
  • Spectral Variability and Extended Linear Mixing Model
Categories
  • CODES
    • Change Detection
    • Classification of Hyperspectral Images
    • Classification of Remote Sensing Data
    • Data fusion: hyperspectral + Lidar
    • Data fusion: Hyperspectral + Multispectral
    • Deep Learning
    • Denoising
    • Graphs, Manifold
    • Hyperspectral
    • Hyperspectral remote sensing
    • Hyperspectral Super Resolution
    • Machine Learning in Remote Sensing
    • Multi-modal
    • Pansharpening
    • Registration
    • Spectral Unmixing
    • Super Resolution
    • Synthetic Aperture Radar and Radar Sounder
  • DATA
Contact

Mail : Jocelyn Chanussot

Like Us On Facebook
Facebook Pagelike Widget
Follow Us On Twitter
Follow @RemoteOpen
Links

http://www.jocelyn-chanussot.net